Topological Dimension and Dynamical Systems

Buch | Softcover
XV, 233 Seiten
2015
Springer International Publishing (Verlag)
978-3-319-19793-7 (ISBN)

Lese- und Medienproben

Topological Dimension and Dynamical Systems - Michel Coornaert
69,54 inkl. MwSt
Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts.

A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner's characterization of amenability and may be read independently from the rest of the book.

Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.

Professor Michel Coornaert teaches at the University of Strasbourg. He is the author of many Springer volumes including Cellular Automata and Groups (2010), Symbolic Dynamics and Hyperbolic Groups (1993) and Geometrie et theorie des groupes (1990).

Topological Dimension.- Zero-Dimensional Spaces.- Topological Dimension of Polyhedra.- Dimension and Maps.- Some Classical Counterexamples.- Mean Topological Dimension for Continuous Maps.- Shifts and Subshifts over Z.- Applications of Mean Dimension to Embedding Problems.- Amenable Groups.- Mean Topological Dimension for Actions of Amenable Groups.

Erscheint lt. Verlag 6.7.2015
Reihe/Serie Universitext
Zusatzinfo XV, 233 p. 13 illus., 1 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 372 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte amenable group • Benjamin Weiss • Covering dimension • Dynamical Systems • Dynamisches System • Elon Lindenstrauss • Mean Topological Dimension • Misha Gromov • Shift • Subshift • symbolic dynamics • topological invariant • Topologische Gruppe
ISBN-10 3-319-19793-2 / 3319197932
ISBN-13 978-3-319-19793-7 / 9783319197937
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00