Calculus in Vector Spaces, Revised Expanded
Seiten
1994
|
2nd edition
Routledge (Verlag)
978-0-8247-9279-4 (ISBN)
Routledge (Verlag)
978-0-8247-9279-4 (ISBN)
Addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This title introduces the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space.
Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.
Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.
Corwin, Lawrence
Some Preliminaries. Vector Spaces. The Derivative. The Structure of Vector Spaces. Compact and Connected Sets. The Chain Rule, Higher Derivatives, and Taylor's Theorem. Linear Transformations and Matrices. Maxima and Minima. The Inverse and Implicit Function Theorems. The Spectral Theorem. Integration. Iterated Integrals and the Fubini Theorem. Line Integrals. Surface Integrals. Differential Forms. Integration of Differential Forms. Appendices: the existence of determinants, Jordan canonical form, solutions of selected exercises.
Erscheint lt. Verlag | 8.12.1994 |
---|---|
Reihe/Serie | Chapman & Hall/CRC Pure and Applied Mathematics |
Verlagsort | New York |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 839 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
ISBN-10 | 0-8247-9279-3 / 0824792793 |
ISBN-13 | 978-0-8247-9279-4 / 9780824792794 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €