Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Springer-Verlag New York Inc.
978-1-4939-2829-3 (ISBN)
The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.
The Geometry and Moduli of K3 Surfaces (A. Harder, A. Thompson).- Picard Ranks of K3 Surfaces of BHK Type (T. Kelly).- Reflexive Polytopes and Lattice-Polarized K3 Surfaces (U. Whitcher).- An Introduction to Hodge Theory (S.A. Filippini, H. Ruddat, A. Thompson).- Introduction to Nonabelian Hodge Theory (A. Garcia-Raboso, S. Rayan).- Algebraic and Arithmetic Properties of Period Maps (M. Kerr).- Mirror Symmetry in Physics (C. Quigley).- Introduction to Gromov–Witten Theory (S. Rose).- Introduction to Donaldson–Thomas and Stable Pair Invariants (M. van Garrel).- Donaldson–Thomas Invariants and Wall-Crossing Formulas (Y. Zhu).- Enumerative Aspects of the Gross–Siebert Program (M. van Garrel, D.P. Overholser, H. Ruddat).- Introduction to Modular Forms (S. Rose).- Lectures on Holomorphic Anomaly Equations (A. Kanazawa, J. Zhou).- Polynomial Structure of Topological Partition Functions (J. Zhou).- Introduction to Arithmetic Mirror Symmetry (A. Perunicic).
Reihe/Serie | Fields Institute Monographs ; 34 |
---|---|
Zusatzinfo | 12 Illustrations, color; 59 Illustrations, black and white; X, 547 p. 71 illus., 12 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Donaldson–Thomas invariants • Gromov–Witten theory • Gross–Siebert program • Hodge Theory • Mathematik • mirror symmetry • moduli problem • String Theory • toric approach |
ISBN-10 | 1-4939-2829-5 / 1493928295 |
ISBN-13 | 978-1-4939-2829-3 / 9781493928293 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich