Blind Image Deconvolution (eBook)
XV, 151 Seiten
Springer International Publishing (Verlag)
978-3-319-10485-0 (ISBN)
Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not.
In order to avoid the assumptions needed for convergence analysis in the Fourier domain, the authors use a general method of convergence analysis used for alternate minimization based on three point and four point properties of the points in the image space. The authors prove that all points in the image space satisfy the three point property and also derive the conditions under which four point property is satisfied. This provides the conditions under which alternate minimization for blind deconvolution converges with a quadratic prior.
Since the convergence properties depend on the chosen priors, one should design priors that avoid trivial solutions. Hence, a sparsity based solution is also provided for blind deconvolution, by using image priors having a cost that increases with the amount of blur, which is another way to prevent trivial solutions in joint estimation. This book will be a highly useful resource to the researchers and academicians in the specific area of blind deconvolution.
Introduction.- Mathematical Background.- Blind Deconvolution Methods: A Review.- MAP Estimation: When Does it Work?.- Convergence Analysis in Fourier Domain.- Spatial Domain Convergence Analysis.- Sparsity-based Blind Deconvolution.- Conclusions and Future Research Directions.
Erscheint lt. Verlag | 22.9.2014 |
---|---|
Zusatzinfo | XV, 151 p. 33 illus., 16 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Schlagworte | Alternate minimization • bilinear ill-posed problem • blind image deconvolution • convergence analysis • iterative shrinkage thresholding algorithm • joint estimation • majorization-minimization • Regularization • sparsity based prior • total variation regularization |
ISBN-10 | 3-319-10485-3 / 3319104853 |
ISBN-13 | 978-3-319-10485-0 / 9783319104850 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich