Foundations of Linear and Generalized Linear Models (eBook)

(Autor)

eBook Download: EPUB
2015
John Wiley & Sons (Verlag)
978-1-118-73005-8 (ISBN)

Lese- und Medienproben

Foundations of Linear and Generalized Linear Models - Alan Agresti
Systemvoraussetzungen
100,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

ALAN AGRESTI, PhD, is Distinguished Professor Emeritus in the Department of Statistics at the University of Florida. He has presented short courses on generalized linear models and categorical data methods in more than 30 countries. The author of over 200 journal articles, Dr. Agresti is also the author of Categorical Data Analysis, Third Edition, Analysis of Ordinal Categorical Data, Second Edition, and An Introduction to Categorical Data Analysis, Second Edition, all published by Wiley.

"The book arose from a one-semester graduate level course taught by Alan Agresti at Harvard University. It has a clear didactic focus, which benefits greatly from Agresti's well-known clear writing style. Each of the 11 chapters is followed by around 40 exercises, which are diverse and interesting."

"...I am very happy with the foundational perspective of this book. I think that students who master this material will have a very thorough understanding of the most important aspects of GLMs, which is more valuable than a kaleidoscopic knowledge. This is certainly one of the books I will consider when next I need to teach a course in generalized linear models."

"...this is a great introduction to GLMs written in a clear and didactic style, and with a thoughtful choice and presentation of the material. Highly recommended."
--Biometrics Journal, 2016

"This book is an essential reference for anyone working with or teaching GLMs." (Mathematical Association of America, 2016)

Erscheint lt. Verlag 15.1.2015
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • applied probability • Applied Probability & Statistics • Applied Probability & Statistics - Models • Applied Statistics • Bayesian modeling • binary data • Biostatistics • categorical data • correlated multi-response data</p> • Count Data • Data Analysis • Datenanalyse • Generalized Linear Models • high-dimensional problems • inference • least squares theory • <p>Linear models • Model Fitting • multinomial response models • quasi—likelihood methods • R software • Statistical Inference • Statistical Models • Statistics • Statistik
ISBN-10 1-118-73005-4 / 1118730054
ISBN-13 978-1-118-73005-8 / 9781118730058
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich