Rewriting Techniques (eBook)
400 Seiten
Elsevier Science (Verlag)
978-1-4832-5967-3 (ISBN)
Resolution of Equations in Algebraic Structures: Volume 2, Rewriting Techniques is a collection of papers dealing with the construction of canonical rewrite systems, constraint handling in logic programming, and completion algorithms for conditional rewriting systems. Papers discuss the Knuth-Bendix completion method which constructs a complete system for a given set of equations, including extensions of the method dealing with termination, unfailing completion, and associative-communicative completion. One paper examines the various practical techniques that can be used to extend Prolog as a constraint solver, particularly on techniques that solve boolean equations, imposing inequality, disequality, and finitary domain constraints on variables. Another paper presents a sufficient condition for confluence of conditional rewriting, and a practical unification algorithm modulo conditional rewriting through the notion of conditional narrowing. One paper analyzes the possibility of using completion for inductive proofs in the initial algebra of an equational variety without explicit induction. Another papers discusses solving systems of word equations in the free monoid and the free group, where a solution is defined as a word homomorphism. Programmers, mathematicians, students, and instructors involved in computer science and computer logic will find this collection valuable.
Front Cover 1
Rewriting Techniques 4
Copyright Page 5
Table of Contents 6
Contributors 10
Foreword 12
A Preview of Volume 2:
16
Chapter 1.
22
1. Introduction 22
2. Definitions 24
3. The Knuth-Bendix Completion Procedure 25
4. Unfailing Completion 27
5. Proof Simplification 28
6. Correctness of Unfailing Completion 33
7. Construction of Canonical Rewrite Systems 37
8. Refutational Theorem Proving 43
9. Horn Clauses with Equality 45
References 50
Chapter
52
1. Introduction 52
2. The Completion Procedure 58
3. Extensions 71
4. Applications 79
5. Conclusion 96
Acknowledgement 97
References 97
Chapter
108
1. Introduction 108
2. Prolog as a Constraint Language 109
3. Extending the Computation Domain 111
4. Boolean Terms in Prolog 117
5. Finite Domains in Prolog 123
6. Conclusion 133
Acknowledgment 134
References 134
Chapter
138
1. Introduction 138
2. Preliminaries 139
3. Principle of Induction on Recursively Reducible Expressions 141
4. Fertilizing Induction 147
5. Two Examples of Proof by Combinatory Induction 148
6. Combinatory Induction on Lists 154
7. Final Remarks 161
Acknowledgement 161
References 161
Chapter
162
1. Introduction 162
2. General Conditional Systems 164
3. Contextual Rewriting 174
4. Conclusion 186
Acknowledgments 188
References 188
Chapter
192
1. Introduction 192
2. An Algebraic Approach of Unification 194
3. Unification in Combination of Equational Theories 206
4. A New AC-Uniflcation Algorithm 219
5. Conclusion 227
Acknowledgements 228
References 228
Chapter
232
1. Introduction 232
2. Proof Transformation 236
3. Inductive Completion with Confluence Criteria 248
4. Other Work and Further Work 258
Acknowledgements 262
References 262
Chapter
266
1. Introduction 266
2. A Non-deterministic Algorithm for Standard Unification 268
3. Unification in Equational Theories 271
4. An Algorithm Based on Multiequations 280
5. Semantic Unification and Logic Programming 286
6. Equational Theories with Constructors 289
7. Conclusions 292
Acknowledgement 293
References 294
Chapter 9. Equations in Words 296
1. Introduction 296
2. Basic Definitions 297
3. Algorithms 303
4. The Compactness Theorem 309
5. Quadratic Equations 311
Acknowledgments 315
References 316
Chapter
318
1. Introduction 318
2. Order-Sorted Equational Logic 323
3. Order-Sorted Rewriting 334
4. Order-Sorted Unification 343
5. Hierarchical Specifications and Partial Functions 355
6. Strict Algebras and Base Homomorphisms 366
7. Changing the Sort Discipline 371
Acknowledgments 385
References 385
Index 390
Erscheint lt. Verlag | 10.5.2014 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Technik | |
ISBN-10 | 1-4832-5967-6 / 1483259676 |
ISBN-13 | 978-1-4832-5967-3 / 9781483259673 |
Haben Sie eine Frage zum Produkt? |
Größe: 22,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich