Modular Invariants - D. E. Rutherford

Modular Invariants

Buch | Softcover
94 Seiten
2015
Cambridge University Press (Verlag)
978-1-107-49376-6 (ISBN)
23,65 inkl. MwSt
Originally published in 1932 as number twenty-seven in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides a concise account of the theory of modular invariants as embodied in the work of Dickson, Glenn and Hazlett. Appendices are included.
Originally published in 1932 as number twenty=seven in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides a concise account of the theory of modular invariants as embodied in the work of Dickson, Glenn and Hazlett. Appendices are included. This book will be of value to anyone with an interest in modular invariants and the history of mathematics.

Preface; Part I: 1. A new notation; 2. Galois fields and Fermat's theorem; 3. Transformations in the Galois fields; 4. Types of concomitants; 5. Systems and finiteness; 6. Symbolical notation; 7. Generators of linear transformations; 8. Weight and isobarbism; 9. Congruent concomitants; 10. Relation between congruent and algebraic covariants; 11. Formal covariants; 13. Dickson's theorem; 14. Formal invariants of linear form; 15. The use of symbolical operators; 16. Annihilators of formal invariants; 17. Dickson's method for formal covariants; 18. Symbolical representation of pseudo-isobaric formal covariants; 19. Classes; 20. Characteristic invariants; 21. Syzygies; 22. Residual covariants; 23. Miss Sanderson's theorem; 24. A method of finding characteristic invariants; 25. Smallest full systems; 26. Residual invariants of linear forms; 27. Residual invariants of quadratic forms; 28. Cubic and higher forms; 29. Relative unimportance of residual covariants; 30. Non-formal residual covariants; Part II: 31. Rings and fields; 32. Expansions; 33. Isomorphism; 34. Finite expansions; 35. Transcendental and algebraic expansions; 36. Rational basis theorem of E. Noether; 37. The fields Ky+/-f; 38. Expansions of the first and second sorts; 39. The theorem on divisor chains; 40. R-modules; 41. A theorem of Artin and of van der Waerden; 42. The finiteness criterion of E. Noether; 43. Application of E. Noether's theorem to modular covariants; Appendix I; Appendix II; Appendix III; Index.

Erscheint lt. Verlag 26.3.2015
Reihe/Serie Cambridge Tracts in Mathematics
Verlagsort Cambridge
Sprache englisch
Maße 140 x 216 mm
Gewicht 130 g
Themenwelt Geschichte Teilgebiete der Geschichte Technikgeschichte
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geschichte der Mathematik
ISBN-10 1-107-49376-5 / 1107493765
ISBN-13 978-1-107-49376-6 / 9781107493766
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Digitalisierung neu denken für eine gerechte Gesellschaft

von Mina Saidze

Buch | Hardcover (2023)
Quadriga (Verlag)
20,00
Vom Perceptron zum Deep Learning

von Daniel Sonnet

Buch | Softcover (2022)
Springer Vieweg (Verlag)
19,99