Symmetry -  R. McWeeny

Symmetry (eBook)

An Introduction to Group Theory and Its Applications

(Autor)

H. Jones (Herausgeber)

eBook Download: PDF
2013 | 1. Auflage
262 Seiten
Elsevier Science (Verlag)
978-1-4832-2624-8 (ISBN)
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

Front Cover 1
Symmetry: An Introduction to Group Theory and its Applications 4
Copyright Page 5
Table of Contents 10
THE INTERNATIONAL ENCYCLOPEDIA OF PHYSICAL CHEMISTRY AND CHEMICAL PHYSICS 7
INTRODUCTION 8
PREFACE 14
CHAPTER 1. GROUPS 16
1.1 Symbols and the group property 16
1.2 Definition of a group 21
1.3 The multiplication table 22
1.4 Powers, products, generators 24
1.5 Subgroups, cosets, classes 26
1.6 Invariant subgroups. The factor group 28
1.7 Homomorphisms and isomorphisms 29
1.8 Elementary concept of a representation 31
1.9 The direct product 33
1.10 The algebra of a group 34
CHAPTER 2. LATTICES AND VECTOR SPACES 37
2.1 Lattices. One dimension 37
2.2 Lattices. Two and three dimensions 40
2.3 Vector spaces 42
2.4 n-Dimensional space. Basis vectors 43
2.5 Components and basis changes 46
2.6 Mappings and similarity transformation 48
2.7 Representations. Equivalence 53
2.8 Length and angle. The metric 56
2.9 Unitary transformations 62
2.10 Matrix elements as scalar products 64
CHAPTER 3. POINT AND SPACE GROUPS 69
3.1 Symmetry operations as orthogonal transformations 69
3.2 The axial point groups 74
3.3 The tetrahedral and octahedral point groups 84
3.4 Compatibility of symmetry operations 90
3.5 Symmetry of crystal lattices 93
3.6 Derivation of space groups 100
CHAPTER 4. REPRESENTATIONS OF POINT AND TRANSLATION GROUPS 106
4.1 Matrices for point group operations 106
4.2 Nomenclature. Representations 110
4.3 Translation groups. Representations and reciprocal space 120
CHAPTER 5. IRREDUCIBLE REPRESENTATIONS 124
5.1 Reducibility. Nature of the problem 124
5.2 Reduction and complete reduction. Basic theorems 125
5.3 The orthogonality relation 131
5.4 Group characters 136
5.5 The regular representation 139
5.6 The number of distinct irreducible representations 140
5.7 Reduction of representations 141
5.8 Idempotents and projection operators 146
5.9 The direct product 148
CHAPTER 6. APPLICATIONS INVOLVING ALGEBRAIC FORMS 155
6.1 Nature of applications 155
6.2 Invariant forms. Symmetry restrictions 156
6.3 Principal axes. The eigenvalue problem 162
6.4 Symmetry considerations 165
6.5 Symmetry classification of molecular vibrations 166
6.6 Symmetry coordinates in vibration theory 174
CHAPTER 7. APPLICATIONS INVOLVING FUNCTIONS AND OPERATORS 181
7.1 Transformation of functions 181
7.2 Functions of Cartesian coordinates 185
7.3 Operator equations. Invariance 189
7.4 Symmetry and the eigenvalue problem 196
7.5 Approximation methods. Symmetry functions 202
7.6 Symmetry functions by projection 205
7.7 Symmetry functions and equivalent functions 210
7.8 Determination of equivalent functions 212
CHAPTER 8. APPLICATIONS INVOLVING TENSORS AND TENSOR OPERATORS 218
8.1 Scalar, vector and tensor properties 218
8.2 Significance of the metric 221
8.3 Tensor properties. Symmetry restrictions 223
8.4 Symmetric and antisymmetric tensors 226
8.5 Tensor fields. Tensor operators 233
8.6 Matrix elements of tensor operators 239
8.7 Detennination of coupling coefficients 246
APPENDIX 1: Representations carried by harmonic functions 250
APPENDIX 2: Alternative bases for cubic groups 256
INDEX 260

Erscheint lt. Verlag 3.9.2013
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 1-4832-2624-7 / 1483226247
ISBN-13 978-1-4832-2624-8 / 9781483226248
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 26,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich