Action-minimizing Methods in Hamiltonian Dynamics
Princeton University Press (Verlag)
978-0-691-16450-2 (ISBN)
He achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. Sorrentino then describes the whole theory and its subsequent developments and applications in their full generality. Shedding new light on John Mather's revolutionary ideas, this book is certain to become a foundational text in the modern study of Hamiltonian systems.
Alfonso Sorrentino is associate professor of mathematics at the University of Rome "Tor Vergata" in Italy. He holds a PhD in mathematics from Princeton University.
Preface vii 1 Tonelli Lagrangians and Hamiltonians on Compact Manifolds 1 1.1 Lagrangian Point of View 1 1.2 Hamiltonian Point of View 4 2 From KAM Theory to Aubry-Mather Theory 8 2.1 Action-Minimizing Properties of Measures and Orbits on KAM Tori 8 3 Action-Minimizing Invariant Measures for Tonelli Lagrangians 18 3.1 Action-Minimizing Measures and Mather Sets 18 3.2 Mather Measures and Rotation Vectors 24 3.3 Mather's a-and B-Functions 28 3.4 The Symplectic Invariance of Mather Sets 35 3.5 An Example: The Simple Pendulum (Part I) 39 3.6 Holonomic Measures and Generic Properties of Tonelli Lagrangians 45 4 Action-Minimizing Curves for Tonelli Lagrangians 48 4.1 Global Action-Minimizing Curves: Aubry and Mane Sets 48 4.2 Some Topological and Symplectic Properties of the Aubry and Mane Sets 66 4.3 An Example: The Simple Pendulum (Part II) 68 4.4 Mather's Approach: Peierls' Barrier 71 5 The Hamilton-Jacobi Equation and Weak KAM Theory 76 5.1 Weak Solutions and Subsolutions of Hamilton-Jacobi and Fathi's Weak KAM theory 76 5.2 Regularity of Critical Subsolutions 85 5.3 Non-Wandering Points of the Mane Set 87 Appendices A On the Existence of Invariant Lagrangian Graphs 89 A.1 Symplectic Geometry of the Phase Space 89 A.2 Existence and Nonexistence of Invariant Lagrangian Graphs 91 B Schwartzman Asymptotic Cycle and Dynamics 97 B.1 Schwartzman Asymptotic Cycle 97 B.2 Dynamical Properties 99 Bibliography 107 Index 113
Reihe/Serie | Mathematical Notes |
---|---|
Zusatzinfo | 4 line illus. |
Verlagsort | New Jersey |
Sprache | englisch |
Maße | 152 x 235 mm |
Gewicht | 170 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-691-16450-9 / 0691164509 |
ISBN-13 | 978-0-691-16450-2 / 9780691164502 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich