Les Conjectures de Stark sur les Fonctions L d'Artin en s=0

Notes d'un cours a Orsay redigees par Dominique Bernardi

(Autor)

Buch | Hardcover
148 Seiten
1984
Birkhauser Boston Inc (Verlag)
978-0-8176-3188-8 (ISBN)

Lese- und Medienproben

Les Conjectures de Stark sur les Fonctions L d'Artin en s=0 - J. Tate
64,19 inkl. MwSt
They provide an unexpected contribution to Hilbert’s 12th problem on the generalization of class fields by the values of transcendental functions.This volume also treats these topics: a proof of the main conjecture for rational characters, and Chinburg’s invariant;
This book presents a self-contained introduction to H.M. Stark’s remarkable conjectures about the leading term of the Taylor expansion of Artin’s L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet’s class number formula and Kronecker’s limit formula. They provide an unexpected contribution to Hilbert’s 12th problem on the generalization of class fields by the values of transcendental functions.


This volume also treats these topics: a proof of the main conjecture for rational characters, and Chinburg’s invariant; P. Delgne’s proof of a function field analogue; p-adic versions of the conjectures due to B. Gross and J.-P. Serre.


This volume belongs on the shelf of every mathematics library.

Introduction.-Fonctions L D’Artin.-La Conjecture Principale de Stark.-Caracteres a Valeurs Rationnelles.-Les Cas r(x)=0 et r(x)=1.-La Conjecture Plus Fine Dans le Cas Abelien.-Le Cas Des Corps de Fonctions.-Analogues p-Adiques des Conjectures de Stark.-Bibliographie.

Reihe/Serie Progress in Mathematics ; 47
Zusatzinfo IV, 148 p.
Verlagsort Secaucus
Sprache französisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8176-3188-7 / 0817631887
ISBN-13 978-0-8176-3188-8 / 9780817631888
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich