Für diesen Artikel ist leider kein Bild verfügbar.

Conditional Independence and Linear Programming

(Autor)

Buch | Softcover
46 Seiten
2024 | 1st ed. 2024
Springer Verlag, Japan
978-4-431-55278-9 (ISBN)
53,49 inkl. MwSt
This book is the first to be devoted to the fusion between statistical causal inference and mathematical programming. The main purpose of the book is to provide the algorithms for solving the implication problem of conditional independence statements by using a computer. The concept of conditional independence is very much tied to the factorization of graphical models; hence it is very important to know the rules of conditional independence. Beginning with a brief introduction to linear programming, the book introduces the algebraic representations of conditional independence statements and their applications using linear programming methods. Through simple examples, it is shown that there are at least two different types of linear programming formulations for the implication problem. The first one is based on the concept of supermodular functions. Another is based on the fact that unnecessary information about the factorization of the probability distribution can be removed. This book also provides a detailed explanation of how to implement the solutions for the implication problem of conditional independence statements in R.

1. Introduction.- 2. Linear Programming.- 3. Conditional Independence.- 4. Concluding Remarks.

Erscheint lt. Verlag 22.3.2024
Reihe/Serie JSS Research Series in Statistics
JSS Research Series in Statistics
SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo 5 Illustrations, color; 20 Illustrations, black and white; IV, 46 p. 25 illus., 5 illus. in color.
Verlagsort Tokyo
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Bayesian networks • Conditional independence • Graphical Models • Linear Programming • Statistical causal inference
ISBN-10 4-431-55278-2 / 4431552782
ISBN-13 978-4-431-55278-9 / 9784431552789
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36