Data Preprocessing in Data Mining

Buch | Hardcover
XV, 320 Seiten
2014 | 2015
Springer International Publishing (Verlag)
978-3-319-10246-7 (ISBN)

Lese- und Medienproben

Data Preprocessing in Data Mining - Salvador García, Julián Luengo, Francisco Herrera
213,99 inkl. MwSt

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.

This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Introduction.- Data Sets and Proper Statistical Analysis of Data Mining Techniques.- Data Preparation Basic Models.- Dealing with Missing Values.- Dealing with Noisy Data.- Data Reduction.- Feature Selection.- Instance Selection.- Discretization.- A Data Mining Software Package Including Data Preparation and Reduction: KEEL.

From the book reviews:

"This book is a comprehensive collection of data preprocessing techniques used in data mining. Any readers who practice data mining will find it beneficial ... . This book is an excellent guideline in the topic of data preprocessing for data mining. It is suitable for both practitioners and researchers who would like to use datasets in their data mining projects." (Xiannong Meng, Computing Reviews, December, 2014)

Erscheint lt. Verlag 11.9.2014
Reihe/Serie Intelligent Systems Reference Library
Zusatzinfo XV, 320 p. 41 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 666 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Data Mining • Data Preparation • Data preprocessing • Data reduction • discretization • Feature Selection • Instance Selection • machine learning • Missing Values • Noisy Data
ISBN-10 3-319-10246-X / 331910246X
ISBN-13 978-3-319-10246-7 / 9783319102467
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90