Principles of Electromagnetic Methods in Surface Geophysics -  Dimitry Alekseev,  Alex Kaufman,  Michael Oristaglio

Principles of Electromagnetic Methods in Surface Geophysics (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
794 Seiten
Elsevier Science (Verlag)
978-0-444-53830-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Principles of Electromagnetic Methods in Surface Geophysics contains information about the theory of electromagnetic fields in a conducting media. It describes the theoretical and physical principles of the main geophysical methods using electromagnetic fields, including frequency and transient soundings, electromagnetic profiling, and magnetotelluric soundings. Special attention is paid to models and signal processing methods used in modern exploration geophysics for groundwater, mineral and hydrocarbon exploration.


    • Offers an integrated approach to the description of electromagnetic geophysical fields used for surface geophysical surveys.
    • Provides a clear introduction to the physical background of electromagnetic methods and their application.
    • Rounds off the treatment of the main geophysical methods: gravity, magnetic seismic, electric and electromagnetic methods

Principles of Electromagnetic Methods in Surface Geophysics contains information about the theory of electromagnetic fields in a conducting media. It describes the theoretical and physical principles of the main geophysical methods using electromagnetic fields, including frequency and transient soundings, electromagnetic profiling, and magnetotelluric soundings. Special attention is paid to models and signal processing methods used in modern exploration geophysics for groundwater, mineral and hydrocarbon exploration. Offers an integrated approach to the description of electromagnetic geophysical fields used for surface geophysical surveys Provides a clear introduction to the physical background of electromagnetic methods and their application Rounds off the treatment of the main geophysical methods: gravity, magnetic seismic, electric and electromagnetic methods

Quasi-Stationary Field of the Electric Dipole in a Uniform Medium


Derivation of Equations for the Field


Next we consider the general case of a quasi-stationary field proceeding from Eq. (13.3). As in the case of the magnetic dipole, in order to simplify the solution of the boundary value problem, we introduce a vector potential of the electric field, based on the fact that div B = 0, in the following way:

=curlA

(13.14)

Of course, the function A is not uniquely defined by Eq. (13.14). Substituting the last expression in the first Maxwell's equation,

E=−∂B∂t

we have

E=−curl∂A∂torcurl(E+∂A∂t)=0

Whence,

=−∂A∂t−gradU

(13.15)

Here, U is the scalar potential. Replacement of E and B in the second Maxwell's equation by the functions A and U gives

curlA=−μ0γ∂A∂t−γμ0gradU

(13.16)

Assuming that the electromagnetic field is sinusoidal,

=Re[E∗exp(−iωt)],B=Re[B∗exp(−iωt)]

and

=Re[A∗exp(−iωt)],U=Re[U∗exp(−iωt)]

and making use of the vector identity

curlA=graddivA−ΔA

we obtain from Eq. (13.16) the following equation for the complex amplitudes:

divA∗−ΔA∗=iγμ0ωA∗−γμ0gradU∗

(13.17)

As in the case of potentials describing the field of the magnetic dipole, the functions A∗ and U∗ are not uniquely defined from Eqs (13.14) and (13.15), and therefore, there is freedom to choose a pair of functions in such a way as to simplify Eq. (13.17) and eliminate from further consideration the complex amplitude of the scalar potential. Choosing a pair of functions U∗ and A∗ that satisfy the gauge condition,

A∗=−γμ0U∗,

(13.18)

we obtain the Helmholtz equation for the complex amplitude of the vector potential A

2A∗+k2A∗=0,

(13.19)

where k2 = iγμ0ω is the square of the wave number. In accord with Eqs (13.14), (13.15), and (13.18), the electromagnetic field has been expressed solely in terms of the vector potential:

∗=curlA∗E∗=iωA∗+1γμ0graddivA∗

(13.20)

The physical intuition suggests that the quasi-stationary field has as the constant field the φcomponent of the magnetic field only. Then bearing in mind Eq. (13.14), it is reasonable to find an expression for all components of electromagnetic field with help of only one component of the vector potential Az. Besides we suppose that this component is a function of the coordinate R; that is, z∗(k,R). Then in the spherical system of coordinates, Eq. (13.19) has the form

R2ddRR2dAz∗dR+k2Az∗=0,

(13.21)

since it is assumed that

Az∂θ=∂Az∂φ=0.

As was shown earlier, the solution of Eq. (13.21) which decreases as a function of R is

z∗=Cexp(ikR)/R.

(13.22)

It is clear that this expression is the same as that for the complex amplitude of the vector potential for the magnetic dipole but the constants may be different. From Eq. (13.22), we have

A∗=∂Az∗∂z=Cexp(ikR)R2(ikR−1)cosθ.

(13.23)

In the spherical system of coordinates, the vector potential is characterized by two components AR and Aθ:

R=Azcosθ,Aθ=−Azsinθ,

and in accordance with Eq. (13.14), the magnetic field can be written as

∗=1R2sinθ|1RR1θRsinθ1φ∂∂R∂∂θ∂∂φAz∗cosθ−Az∗Rsinθ0|.

Whence,

R∗=Bθ∗=0

and

φ∗=CR2(1−ikR)exp(ikR)sinθ.

(13.24)

As the frequency goes to zero, Eq. (13.24) becomes equivalent to Eq. (13.12), so that we are able to find value for the constant C:

=μ0Idl4π.

(13.25)

Thus, we have the following expression for the magnetic field:

φ∗=μ0Idl4πR2(1−ikR)exp(ikR)sinθ

(13.26)

Making use of Eq. (13.20), expressions for the complex amplitudes of the electric field are

R∗=2p04πε0R3exp(ikR)(1−ikR)cosθ

and

θ∗=p04πε0R3exp(ikR)(1−ikR−k2R2)sinθ

(13.27)

Inasmuch as the electromagnetic field, described by Eqs (13.26) and (13.27), satisfies the Helmholtz equation for the complex amplitude as well as boundary conditions near the source and at great distances, one can say that a unique solution has been found. In other words, our assumptions about the behavior of the vector potential were correct. In accord with Eq. (13.26), the geometry of the magnetic field is remarkably simple: its vector lines form circles situated in horizontal planes centered on the z-axis. As in the case of constant field currents, which are the sources of the magnetic field, are located in the meridian planes and in accord with Eq. (13.27),

R∗=Idl2πR3exp(ikR)(1−ikR)sinθ,jθ∗=Idl4πR3exp(ikR)(1−ikR−k2R2)sinθ.

(13.28)

In contrast to the case of the magnetic dipole, there are two sources for the electric field from the electric dipole, namely, the electric charges on the surface of the dipole electrodes and time variations of the magnetic field Bφ. In order to study the field of the magnetic dipole, it is convenient to normalize it by the primary field caused by the current in a loop. Here it is natural to consider the ratio between the total field and the stationary (direct current) field; that is, let us represent Eqs (13.26) and (13.27) as

φ∗=μ0Idl4πR2bφ∗sinθER∗=2p04πε0R3eR∗cosθEθ∗=p04πε0R3eθ∗sinθ,

(13.29)

where

φ∗=eR∗=exp(ikR)(1−ikR)eθ∗=exp(ikR)(1−ikR−k2R2)

(13.30)

and

R=Rδ(1+i)=p(1+i)

It is proper to notice that expressions for the electric and magnetic fields caused by the electric dipole with the accuracy of a constant are the same as those for the magnetic and electric fields caused by the magnetic dipole. As usual, we distinguish three zones where the behavior of the sinusoidal waves in a conducting medium is different: the near, intermediate, and wave zones. Let us first consider in detail the range of small values for induction number p.

The Near Zone p < 1


Representing exp (ikR) as a series and substituting this into the first equation of the set (Eq. (13.30)), we obtain

R∗=bφ∗=1+∑n=2∞1−nn!(ikR)

(13.31)

Thus for the quadrature and in-phase components R∗, we have

eR∗≈p2−23p3,Ineφ∗≈1−23p3,

(13.32)

and correspondingly,

ER∗≈2p04πε0R3cosθ(p2−23p3)

or

ER∗≈Idl2πcosθ[μ0ω2R−13·21/2(μ0ω)3/2γ1/2]

(13.33)

and

nER∗≈2p04πε0R3cosθ(1−23p3)

or

nER∗≈Idl2πcosθ[ρR3−13·21/2(μ0ω)3/2γ1/2]

(13.34)

Applying the same approach to the expression for the component θ∗, we have

θ∗=1+∑n=2∞(n−1)2n!(ikR)n

(13.35)

Hence,

eθ∗≈−p2+43p3,Ineθ∗≈1+43p3

(13.36)

and therefore,

Eθ∗≈Idl4πsinθ[−μ0ω2R+21/23(μ0ω)3/2γ1/2]

and

nEθ∗≈Idl4πsinθ[ρR3+21/23(μ0ω)3/2γ1/2]

(13.37)

By analogy,

Bφ∗≈μ0Idl4πsinθ[γμ0ω2−13·21/2(γμ0ω)3/2R]

and

nBφ∗μ0Idl4πsinθ[1R2−13·21/2(γμ0ω)3/2R]

(13.38)

Equations (13.33)(13.38) allow one to understand better the range of small parameters (near zone) or the low-frequency part of the spectrum. The in-phase component of the electric field can be thought of as a sum of the galvanic and vortex ones. The first one is directly proportional to the resistivity of the medium and coincides with the stationary field...

Erscheint lt. Verlag 27.6.2014
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Naturwissenschaften Geowissenschaften Geophysik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik
ISBN-10 0-444-53830-5 / 0444538305
ISBN-13 978-0-444-53830-7 / 9780444538307
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 13,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 37,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Fundamentals, Modeling, Assessment, and Mitigation

von Faruk Civan

eBook Download (2023)
Elsevier Science (Verlag)
230,00