Beginner’s Course in Topology

Geometric Chapters
Buch | Softcover
XII, 520 Seiten
1984 | 1984
Springer Berlin (Verlag)
978-3-540-13577-7 (ISBN)

Lese- und Medienproben

Beginner’s Course in Topology - D. B. Fuks, V. A. Rokhlin
106,99 inkl. MwSt
This book is the result of reworking part of a rather lengthy course of lectures of which we delivered several versions at the Leningrad and Moscow Universities. In these lectures we presented an introduction to the fundamental topics of topology: homology theory, homotopy theory, theory of bundles, and topology of manifolds. The structure of the course was well determined by the guiding term elementary topology, whose main significance resides in the fact that it made us use a rather simple apparatus. tn this book we have retained {hose sections of the course where algebra plays a subordinate role. We plan to publish the more algebraic part of the lectures as a separate book. Reprocessing the lectures to produce the book resulted in the profits and losses inherent in such a situation: the rigour has increased to the detriment of the intuitiveness, the geometric descriptions have been replaced by formulas needing interpretations, etc. Nevertheless, it seems to us tha·t the book retains the main qualities of our lectures: their elementary, systematic, and pedagogical features. The preparation of the reader is assumed to be limi ted to the usual knowledge of set ·theory, algebra, and calculus which mathematics students should master after the first year and a half of studies. The exposition is accompanied by examples and exercises. We hope that the book can be used as a topology textbook.

Set-Theoretical Terms and Notations Used in This Book, but not Generally Adopted.- 1 Topological Spaces.-
1. Fundamental Concepts.-
2. Constructions.-
3. Homotopies.- 2 Cellular Spaces.-
1. Cellular Spaces and Their Topological Properties.-
2. Simplicial Spaces.-
3. Homotopy Properties of Cellular Spaces.- 3 Smooth Manifolds.-
1. Fundamental Concepts.-
2. Stiefel and Grassman Manifolds.-
3. A Digression: Three Theorems from Calculus.-
4. Embeddings. Immersions. Smoothings. Approximations.-
5. The Simplest Structure Theorems.- 4 Bundles.-
1. Bundles without Group Structure.-
2. A Digression: Topological Groups and Transformation Groups.-
3. Bundles with a Group Structure.-
4. The Classification of Steenrod Bundles.-
5. Vector Bundles.-
6. Smooth Bundles.- 5 Homotopy Groups.-
1. The General Theory.-
2. The Homotopy Groups of Spheres and of Classical Manifolds.-
3. Homotopy Groups of Cellular Spaces.-
4. Weak Homotopy Equivalence.-
5. The Whitehead Product.-
6. Continuation of the Theory of Bundles.- Glossary of Symbols.

Erscheint lt. Verlag 1.8.1984
Reihe/Serie Universitext
Übersetzer A. Iacob
Zusatzinfo XII, 520 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 760 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebraische Topologie • CON_D036 • Topologie
ISBN-10 3-540-13577-4 / 3540135774
ISBN-13 978-3-540-13577-7 / 9783540135777
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95