Data Fusion in Information Retrieval - Shengli Wu

Data Fusion in Information Retrieval

(Autor)

Buch | Softcover
XII, 228 Seiten
2014 | 2012
Springer Berlin (Verlag)
978-3-642-44801-0 (ISBN)
139,99 inkl. MwSt
This book offers a theoretical and empirical approach to data fusion, used in information retrieval in complex, diverse settings such as web and social networks, legal, enterprise and others. Discusses, analyzes and ealuates typical data fusion algorithms.

The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others:

What are the key factors that affect the performance of data fusion algorithms significantly?

What conditions are favorable to data fusion algorithms?

CombSum and CombMNZ, which one is better? and why?

What is the rationale of using the linear combination method?

How can the best fusion option be found under any given circumstances?

Introduction.- Evaluation of Retrieval Results.- Score Normalization.- Observations and Analyses.- The Linear Combination Method.- A Geometric Framework for Data Fusion.- Ranking-Based Fusion.- Fusing Results from Overlapping Databases.- Application of the Data Fusion Technique.

From the reviews:

"This book is ... the result of a 10-year long engagement in data fusion within the context of various research projects. ... The book is written in a very concise and dense manner, which makes it ... readable for the expert, in particular the one with a good mathematical background. It contains a lot of evaluation results that help compare the various fusion methods presented, which is helpful for the practitioner. It also gives a good overview ... of applications of data fusion." (Gottfried Vossen, Zentralblatt MATH, Vol. 1246, 2012)

Erscheint lt. Verlag 9.5.2014
Reihe/Serie Adaptation, Learning, and Optimization
Zusatzinfo XII, 228 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 373 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte data fusion • Digital Libraries • Information Retrieval • meta-search
ISBN-10 3-642-44801-1 / 3642448011
ISBN-13 978-3-642-44801-0 / 9783642448010
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90