Duality Theories for Boolean Algebras with Operators

(Autor)

Buch | Hardcover
XIV, 233 Seiten
2014 | 2014
Springer International Publishing (Verlag)
978-3-319-06742-1 (ISBN)

Lese- und Medienproben

Duality Theories for Boolean Algebras with Operators - Steven Givant
53,49 inkl. MwSt
In this new text, Steven Givant-the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski-develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.

1. Algebraic Duality.- 2. Topological Duality.- 3. Hybrid Duality.

"The monograph under review is devoted to a detailed study of different aspects of duality theories for Boolean algebras with operators. ... I found this volume an excellent treatment of the work done on dualities for Boolean algebras with operators as well as a solid contribution to the field." (Ganna Kudryavtseva, zbMATH 1316.03039, 2015)

Erscheint lt. Verlag 5.8.2014
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XIV, 233 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 515 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Logik / Mengenlehre
Schlagworte algebraic duality • Boolean algebra • hybrid duality • relational structure • topological duality • weak compactifications
ISBN-10 3-319-06742-7 / 3319067427
ISBN-13 978-3-319-06742-1 / 9783319067421
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich