Understanding Markov Chains (eBook)

Examples and Applications
eBook Download: PDF
2013 | 2013
IX, 354 Seiten
Springer Singapore (Verlag)
978-981-4451-51-2 (ISBN)

Lese- und Medienproben

Understanding Markov Chains - Nicolas Privault
Systemvoraussetzungen
35,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides an undergraduate introduction to discrete and continuous-time Markov chains and their applications. It includes more than 70 exercises, along with complete solutions, that help illustrate and present all concepts.
This book provides an undergraduate introduction to discrete and continuous-time Markov chains and their applications. A large focus is placed on the first step analysis technique and its applications to average hitting times and ruin probabilities. Classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes, are also covered. Two major examples (gambling processes and random walks) are treated in detail from the beginning, before the general theory itself is presented in the subsequent chapters. An introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times is also provided, and the book includes a chapter on spatial Poisson processes with some recent results on moment identities and deviation inequalities for Poisson stochastic integrals. The concepts presented are illustrated by examples and by 72 exercises and their complete solutions.

The author is an associate professor from the Nanyang Technological University (NTU) and is well-established in the field of stochastic processes and a highly respected probabilist. He has authored the book, Stochastic Analysis in Discrete and Continuous Settings: With Normal Martingales, Lecture Notes in Mathematics, Springer, 2009 and was a co-editor for the book, Stochastic Analysis with Financial Applications, Progress in Probability, Vol. 65, Springer Basel, 2011. Aside from these two Springer titles, he has authored several others. He is currently teaching the course M27004-Probability Theory and Stochastic Processes at NTU. The manuscript has been developed over the years from his courses on Stochastic Processes.

Introduction1 Probability Background1.1 Probability Spaces and Events1.2 Probability Measures1.3 Conditional Probabilities and Independence1.4 Random Variables1.5 Probability Distributions1.6 Expectation of a Random Variable1.7 Conditional Expectation1.8 Moment and Probability Generating FunctionsExercises2 Gambling Problems2.1 Constrained Random Walk2.2 Ruin Probabilities2.3 Mean Game DurationExercises3 Random Walk3.1 Unrestricted Random Walk3.2 Mean and Variance3.3 Distribution3.4 First Return to ZeroExercises4 Discrete-Time Markov Chains4.1 Markov Property4.2 Transition matrix4.3 Examples of Markov Chains4.4 Higher Order Transition Probabilities4.5 The Two-State Discrete-Time Markov ChainExercises5 First Step Analysis5.1 Hitting Probabilities5.2 Mean Hitting and Absorption Times5.3 First Return Times5.4 Number of ReturnsExercises6 Classication of States6.1 Communicating States6.2 Recurrent States6.3 Transient States6.4 Positive and Null Recurrence6.5 Periodicity and AperiodicityExercises7 Long-Run Behavior of Markov Chains7.1 Limiting Distributions7.2 Stationary Distributions7.3 Markov Chain Monte CarloExercises8 Branching Processes8.1 Defnition and Examples8.2 Probability Generating Functions8.3 Extinction ProbabilitiesExercises9 Continuous-Time Markov Chains9.1 The Poisson Process9.2 Continuous-Time Chains9.3 Transition Semigroup9.4 Infinitesimal Generator9.5 The Two-State Continuous-Time Markov Chain9.6 Limiting and Stationary Distributions9.7 The Discrete-Time Embedded Chain9.8 Mean Absorption Time and ProbabilitiesExercises10 Discrete-Time Martingales10.1 Filtrations and Conditional Expectations10.2 Martingales - Definition and Properties10.3 Ruin Probabilities10.4 Mean Game DurationExercises11 Spatial Poisson Processes11.1 Spatial Poisson (1781-1840) Processes11.2 Poisson Stochastic Integrals11.3 Transformations of Poisson Measures11.4 Moments of Poisson Stochastic Integrals11.5 Deviation InequalitiesExercises12 Reliability Theory12.1 Survival Probabilities12.2 Poisson Process with Time-DependentIntensity12.3 Mean Time to FailureExercisesSome Useful IdentitiesSolutions to the ExercisesReferencesIndex

Erscheint lt. Verlag 13.8.2013
Reihe/Serie Springer Undergraduate Mathematics Series
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Applications • Applications of Stochastic Processes • Discrete and continuous-time Markov Chains • First-step analysis in Markov Chains • Gambling Processes and random walks in Markov Chains • Highly accessible textbook on Stochastic Processes • Introduction to Stochastic Processes • Markov Chains self-study • Markov Chains textbook • Markov Chains textbook with examples • Modern textbook on Stochastic Processes • Nicolas Privault Stochastic Processes • Solved problems in Markov Chains
ISBN-10 981-4451-51-7 / 9814451517
ISBN-13 978-981-4451-51-2 / 9789814451512
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48