Automorphisms of Affine Spaces
Springer (Verlag)
978-0-7923-3523-8 (ISBN)
Audience: A good introduction for graduate students and research mathematicians interested in invertible polynomial maps.
I Polynomial Maps in Dimension n.- Seven Lectures on Polynomial Automorphisms.- The Jacobian Conjecture: Some Steps towards Solution.- Finite Automorphisms of Affine N-Space.- Polyomorphisms Conjugate to Dilations.- On Separable Algebras over a U.F.D. and the Jacobian Conjecture in Any Characteristic.- Global Injectivity of Polynomial Maps Via Vector Fields.- II Two-dimensional Results.- On the Markus-Yamabe Conjecture.- Derivations Generated by Polynomials, Their Images and Complements of the Images.- Normal Forms and the Jacobian Conjecture.- Radial Similarity of Newton Polygons.- An Algorithm that Determines whether a Polynomial Map is Bijective.- III Group Actions.- Algebraic Aspects of Additive Group Actions on Complex Affine Space.- Quotients of Algebraic Group Actions.- One-Parameter Subgroups and the Triangular Subgroup of the Affine Cremona Group.- A Note on Nagata’s Automorphism.- IV Reactions on the conference.- On a Question of Yosef Stein.- A Counterexample to a Conjecture of Meisters.- Open Problems.- Some Conference Impressions.
Erscheint lt. Verlag | 30.6.1995 |
---|---|
Zusatzinfo | XX, 244 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 156 x 234 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 0-7923-3523-6 / 0792335236 |
ISBN-13 | 978-0-7923-3523-8 / 9780792335238 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich