Control Design and Analysis for Underactuated Robotic Systems (eBook)

, (Autoren)

eBook Download: PDF
2014 | 2014
XVII, 319 Seiten
Springer London (Verlag)
978-1-4471-6251-3 (ISBN)

Lese- und Medienproben

Control Design and Analysis for Underactuated Robotic Systems - Xin Xin, Yannian Liu
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The last two decades have witnessed considerable progress in the study of underactuated robotic systems (URSs). Control Design and Analysis for Underactuated Robotic Systems presents a unified treatment of control design and analysis for a class of URSs, which include systems with multiple-degree-of-freedom and/or with underactuation degree two. It presents novel notions, features, design techniques and strictly global motion analysis results for these systems. These new materials are shown to be vital in studying the control design and stability analysis of URSs.

Control Design and Analysis for Underactuated Robotic Systems includes the modelling, control design and analysis presented in a systematic way particularly for the following examples:

l  directly and remotely driven  Acrobots

l  Pendubot

l  rotational pendulum

l  counter-weighted Acrobot

2-link underactuated robot with flexible elbow joint

l  variable-length pendulum

l  3-link gymnastic robot with passive first joint

l  n-link planar robot with passive first joint

l  n-link planar robot with passive single joint

double, or two parallel pendulums on a cart

l  3-link planar robots with underactuation degree two

2-link free flying robot

The theoretical developments are validated by experimental results for the remotely driven Acrobot and the rotational pendulum.

Control Design and Analysis for Underactuated Robotic Systems is intended for advanced undergraduate and graduate students and researchers in the area of control systems, mechanical and robotics systems, nonlinear systems and oscillation. This text will not only enable the reader to gain a better understanding of the power and fundamental limitations of linear and nonlinear control theory for the control design and analysis for these URSs, but also inspire the reader to address the challenges of more complex URSs.



Xin Xin received the B.S. degree in 1987 from the University of Science and Technology of China, China and Ph.D. degree in 1993 from the Southeast University, China. From 1991 to 1993, under the guidance of professor Hidenori Kimura, he did his Ph.D. studies in Osaka University as a co-advised student of China and Japan with the Japanese Government Scholarship. He also received the Doctor degree in engineering in 2000 from Tokyo Institute of Technology. From 1993 to 1995, he was a postdoctoral researcher and then became an associate professor in Southeast University. From 1996 to 1997, he was with the New Energy and Industrial Technology Development, Japan as an advanced industrial technology researcher. From 1997 to 2000, he was an assistant professor of Tokyo Institute of Technology. From 2000, he has been with Okayama Prefectural University as an associate professor, where he is now a professor since 2008. He has over 140 publications in journals, international conferences and book chapters. He received the division paper award of SICE Conference on Control Systems in 2004. His current research interests include robotics, dynamics and control of nonlinear and complex systems.

He has been concentrating on studying URSs for more than a decade. The corresponding research results have been published in 12 international journal papers including IEEE Trans. on Automatic Control, Automatica, IEEE Trans. on Robotics, IEEE Trans. on Control Technology, International Journal of Robust and Nonlinear Control and about 40 refereed conference papers mainly in IEEE Conference on Decision and Control and IFAC world congress.

Yannian Liu received the B.S. degree in electrical engineering from Sichuan University, Chengdu, China in 1988 and the M. S. and Ph.D. from Southeast University, Nanjing, China in 1991 and 1994, respectively. From 1994-1995 she was a postdoctoral researcher in Nanjing University of Aeronautics and Astronautics. From 1996 she was an associate professor in the Control Department of Southeast University. From 1997 to 1999, she was a visiting scholar in the Department of Control and Systems Engineering of Tokyo Institute of Technology. From 2007 to 2010, she was working in the Solution Division of MoMo Alliance Co., Ltd. Okayama, Japan. Her current research interests include robot control and neural network. She has about 20 publications in journals and international conferences and has two Japanese patents.


The last two decades have witnessed considerable progress in the study of underactuated robotic systems (URSs). Control Design and Analysis for Underactuated Robotic Systems presents a unified treatment of control design and analysis for a class of URSs, which include systems with multiple-degree-of-freedom and/or with underactuation degree two. It presents novel notions, features, design techniques and strictly global motion analysis results for these systems. These new materials are shown to be vital in studying the control design and stability analysis of URSs.Control Design and Analysis for Underactuated Robotic Systems includes the modelling, control design and analysis presented in a systematic way particularly for the following examples:l  directly and remotely driven  Acrobotsl  Pendubotl  rotational penduluml  counter-weighted Acrobot2-link underactuated robot with flexible elbow jointl  variable-length penduluml  3-link gymnastic robot with passive first jointl  n-link planar robot with passive first jointl  n-link planar robot with passive single jointdouble, or two parallel pendulums on a cartl  3-link planar robots with underactuation degree two2-link free flying robotThe theoretical developments are validated by experimental results for the remotely driven Acrobot and the rotational pendulum.Control Design and Analysis for Underactuated Robotic Systems is intended for advanced undergraduate and graduate students and researchers in the area of control systems, mechanical and robotics systems, nonlinear systems and oscillation. This text will not only enable the reader to gain a better understanding of the power and fundamental limitations of linear and nonlinear control theory for the control design and analysis for these URSs, but also inspire the reader to address the challenges of more complex URSs.

Xin Xin received the B.S. degree in 1987 from the University of Science and Technology of China, China and Ph.D. degree in 1993 from the Southeast University, China. From 1991 to 1993, under the guidance of professor Hidenori Kimura, he did his Ph.D. studies in Osaka University as a co-advised student of China and Japan with the Japanese Government Scholarship. He also received the Doctor degree in engineering in 2000 from Tokyo Institute of Technology. From 1993 to 1995, he was a postdoctoral researcher and then became an associate professor in Southeast University. From 1996 to 1997, he was with the New Energy and Industrial Technology Development, Japan as an advanced industrial technology researcher. From 1997 to 2000, he was an assistant professor of Tokyo Institute of Technology. From 2000, he has been with Okayama Prefectural University as an associate professor, where he is now a professor since 2008. He has over 140 publications in journals, international conferences and book chapters. He received the division paper award of SICE Conference on Control Systems in 2004. His current research interests include robotics, dynamics and control of nonlinear and complex systems.He has been concentrating on studying URSs for more than a decade. The corresponding research results have been published in 12 international journal papers including IEEE Trans. on Automatic Control, Automatica, IEEE Trans. on Robotics, IEEE Trans. on Control Technology, International Journal of Robust and Nonlinear Control and about 40 refereed conference papers mainly in IEEE Conference on Decision and Control and IFAC world congress.Yannian Liu received the B.S. degree in electrical engineering from Sichuan University, Chengdu, China in 1988 and the M. S. and Ph.D. from Southeast University, Nanjing, China in 1991 and 1994, respectively. From 1994-1995 she was a postdoctoral researcher in Nanjing University of Aeronautics and Astronautics. From 1996 she was an associate professor in the Control Department of Southeast University. From 1997 to 1999, she was a visiting scholar in the Department of Control and Systems Engineering of Tokyo Institute of Technology. From 2007 to 2010, she was working in the Solution Division of MoMo Alliance Co., Ltd. Okayama, Japan. Her current research interests include robot control and neural network. She has about 20 publications in journals and international conferences and has two Japanese patents.

Fundamental Background.- Directly Driven Acrobat.- Remotely Driven Acrobat.- Pendubot.- Rotational Pendulum.- Counter-Weighted Acrobot.- Variable Length Pendulum.- 2-Link Underactuated Robot with Flexible Elbow Joint.- 3-Link Planar Robot with Passive First Joint.- n-Link Planar Robot with Passive First Joint.- n-Link Planar Robot with Single Passive Joint.- Two Parallel Pendulums on a Cart.- Double Pendulum on a Cart.- 3-Link Planar Robot with Two Passive Joints.- 2-Link Flying Robot.

Erscheint lt. Verlag 3.1.2014
Zusatzinfo XVII, 319 p. 111 illus., 94 illus. in color.
Verlagsort London
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Nachrichtentechnik
Schlagworte Energy- and Passivity-based Control • Nonlinear Control • Robotic Systems • Stability and Motion Analysis • Underactuated Systems
ISBN-10 1-4471-6251-X / 144716251X
ISBN-13 978-1-4471-6251-3 / 9781447162513
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90