Plane Algebraic Curves (eBook)
X, 721 Seiten
Springer Basel (Verlag)
978-3-0348-0493-6 (ISBN)
In a detailed and comprehensive introduction to the theory of plane algebraic curves, the authors examine this classical area of mathematics that both figured prominently in ancient Greek studies and remains a source of inspiration and a topic of research to this day. Arising from notes for a course given at the University of Bonn in Germany, 'Plane Algebraic Curves' reflects the authorsʼ concern for the student audience through its emphasis on motivation, development of imagination, and understanding of basic ideas. As classical objects, curves may be viewed from many angles. This text also provides a foundation for the comprehension and exploration of modern work on singularities.
---
In the first chapter one finds many special curves with very attractive geometric presentations - the wealth of illustrations is a distinctive characteristic of this book - and an introduction to projective geometry (over the complex numbers). In the second chapter one finds a very simple proof of Bezout's theorem and a detailed discussion of cubics. The heart of this book - and how else could it be with the first author - is the chapter on the resolution of singularities (always over the complex numbers). (...) Especially remarkable is the outlook to further work on the topics discussed, with numerous references to the literature. Many examples round off this successful representation of a classical and yet still very much alive subject.
(Mathematical Reviews)
Egbert Brieskorn was a Professor of Mathematics at the University of Bonn, Germany.
Horst Knörrer is a Professor of Mathematics at the ETH Zurich, Switzerland.
Egbert Brieskorn was a Professor of Mathematics at the University of Bonn, Germany. Horst Knörrer is a Professor of Mathematics at the ETH Zurich, Switzerland.
I. History of algebraic curves.- 1. Origin and generation of curves.- 2. Synthetic and analytic geometry.- 3. The development of projective geometry.- II. Investigation of curves by elementary algebraic methods.- 4. Polynomials.- 5. Definition and elementary properties of plane algebraic curves.- 6. The intersection of plane curves.- 7. Some simple types of curves.- III. Investigation of curves by resolution of singularities.- 8. Local investigations.- 9. Global investigations.- Bibliography.- Index.
Erscheint lt. Verlag | 27.8.2012 |
---|---|
Reihe/Serie | Modern Birkhäuser Classics | Modern Birkhäuser Classics |
Übersetzer | John Stillwell |
Zusatzinfo | X, 721 p. 301 illus. |
Verlagsort | Basel |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik | |
Schlagworte | Algebraic Geometry • analytic geometry • Bézout's theorem • Bézout's theorem • Projective Geometry • Resolution of Singularities |
ISBN-10 | 3-0348-0493-8 / 3034804938 |
ISBN-13 | 978-3-0348-0493-6 / 9783034804936 |
Haben Sie eine Frage zum Produkt? |
Größe: 59,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich