Gene Therapy of Cancer -

Gene Therapy of Cancer (eBook)

Translational Approaches from Preclinical Studies to Clinical Implementation
eBook Download: PDF | EPUB
2013 | 3. Auflage
554 Seiten
Elsevier Science (Verlag)
978-0-12-394632-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Gene therapy as a treatment for cancer is at a critical point in its evolution. Exciting new developments in gene targeting and vector technology, coupled with results from the first generation of preclinical and clinical studies have led to the design and testing of new therapeutic approaches. The Third Edition of Gene Therapy of Cancer provides crucial updates on the basic and applied sciences of gene therapy. It offers a comprehensive assessment of the field including the areas of suicide gene therapy, oncogene and suppressor gene targeting, immunotherapy, drug resistance gene therapy, and the genetic modification of stem cells. Researchers at all levels of development, from basic laboratory investigators to clinical practitioners, will find this book to be instructive.

Cancer gene therapy, like cancer therapy in general, is evolving rapidly, testing new concepts, targets and pathways, evoking new technologies, and passing new regulatory hurdles. Its essence, however, has not changed: the hope and challenges of returning altered genes to normal, using targeted gene expression to alter the function of both tumor and microenvironment, and in some cases normal cells, and delivering functionally important genes to specific cell types to increase sensitivity to killing or to protect normal cells from cancer therapies.

In some instances, gene therapy for cancer forms a continuum from gene repair through the use of molecularly modified cells; the use of viral and non-viral vector based gene delivery to both tumor and tumor microenvironment; the use of viral and gene based vaccines; and development of new gene-based therapeutics. The unique mechanistically chosen vector platforms are at the heart of this technology because they allow for direct and selective cell death and transient to sustained delivery of vaccine molecules or molecules that affect the microenvironment, vasculature, or the immune response.


  • Explains the underlying cancer biology necessary for understanding proposed therapeutic approaches
  • Presents in-depth description of targeting systems and treatment strategies
  • Covers the breadth of gene therapy approaches including immunotherapeutic, drug resistance,oncolytic viruses, as well as regulatory perspectives from both the NCI and FDA

Gene therapy as a treatment for cancer is at a critical point in its evolution. Exciting new developments in gene targeting and vector technology, coupled with results from the first generation of preclinical and clinical studies have led to the design and testing of new therapeutic approaches. The Third Edition of Gene Therapy of Cancer provides crucial updates on the basic and applied sciences of gene therapy. It offers a comprehensive assessment of the field including the areas of suicide gene therapy, oncogene and suppressor gene targeting, immunotherapy, drug resistance gene therapy, and the genetic modification of stem cells. Researchers at all levels of development, from basic laboratory investigators to clinical practitioners, will find this book to be instructive. Cancer gene therapy, like cancer therapy in general, is evolving rapidly, testing new concepts, targets and pathways, evoking new technologies, and passing new regulatory hurdles. Its essence, however, has not changed: the hope and challenges of returning altered genes to normal, using targeted gene expression to alter the function of both tumor and microenvironment, and in some cases normal cells, and delivering functionally important genes to specific cell types to increase sensitivity to killing or to protect normal cells from cancer therapies. In some instances, gene therapy for cancer forms a continuum from gene repair through the use of molecularly modified cells; the use of viral and non-viral vector based gene delivery to both tumor and tumor microenvironment; the use of viral and gene based vaccines; and development of new gene-based therapeutics. The unique mechanistically chosen vector platforms are at the heart of this technology because they allow for direct and selective cell death and transient to sustained delivery of vaccine molecules or molecules that affect the microenvironment, vasculature, or the immune response. Explains the underlying cancer biology necessary for understanding proposed therapeutic approaches Presents in-depth description of targeting systems and treatment strategies Covers the breadth of gene therapy approaches including immunotherapeutic, drug resistance,oncolytic viruses, as well as regulatory perspectives from both the NCI and FDA

List of Contributors


Jennifer E. Adair,    Fred Hutchinson Cancer Research Center, Seattle, Washington

Jahangir Ahmed,    Queen Mary University of London, London, United Kingdom

Ghassan Alusi,    Queen Mary University of London, London, United Kingdom

Doron Amit,    Hebrew University of Jerusalem, Jerusalem, Israel

Scott J. Antonia,    University of South Florida, Tampa, Florida

Dominick L. Auci,    University of Washington, Seattle, Washington

David A. August,    Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Rutger K. Balvers,    Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands

Lajos Baranyi,    Lentigen Corporation, Gaithersburg, Maryland

Brian C. Beard,    Fred Hutchinson Cancer Research Center, Seattle, Washington

Sebastian Brennig,    Research Group Reprogramming and Gene Therapy, REBIRTH Cluster-of-Excellence and Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany

Elizabeth K. Broussard,    University of Washington, Seattle, Washington

Paul D. Bryson,    University of Southern California, Los Angeles, California

Andrew P. Byrnes,    Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland

Denise L. Cecil,    University of Washington, Seattle, Washington

Tim Chan,    Intrexon Corporation, Germantown, Maryland

Charlie Comins,    University of Surrey, Guildford, United Kingdom

Christiaan R. de Vries,    Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Robert S. DiPaola,    Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Clemens M.F. Dirven,    Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands

Mary L. Disis,    University of Washington, Seattle, Washington

Boro Dropulic,    Lentigen Corporation, Gaithersburg, Maryland

Heather Embree,    Lentigen Corporation, Gaithersburg, Maryland

Michael W. Epperly,    University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania

Juan Fueyo,    University of Texas M. D. Anderson Cancer Center, Houston, Texas

Toshiyoshi Fujiwara,    Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Hua Fung,    Case Western Reserve University and University Hospital of Cleveland, Cleveland, Ohio

Emmanuel Gabriel,    Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Vidya Ganapath,    Rutgers, The State University of New Jersey, Piscataway, New Jersey

Stanton L. Gerson,    Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio

Steven Gill,    Bristol University, AMBI LABS, Southmead Hospital, Bristol, United Kingdom

Michal Gilon,    Hebrew University of Jerusalem, Jerusalem, Israel

Joe Goldufsky,    Rush University Medical Center, Chicago, Illinois

Candelaria Gomez-Manzano,    University of Texas M. D. Anderson Cancer Center, Houston, Texas

Jennifer Rubin Grandis,    University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania

Joel S. Greenberger,    University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania

John W. Greiner,    National Institutes of Health, Bethesda, Maryland

Maneesh Gujrati,    Case Western Reserve University, Cleveland, Ohio

James L. Gulley,    National Institutes of Health, Bethesda, Maryland

Amin Hajitou,    Phage Therapy Group, Imperial College London, London, United Kingdom

Kevin J. Harrington,    Chester Beatty Laboratories, London, United Kingdom

Arash Hatefi,    Rutgers, The State University of New Jersey, Piscataway, New Jersey

Loree C. Heller,    Old Dominion University, Norfolk, Virginia

Richard Heller,    Old Dominion University, Norfolk, Virginia

Akseli Hemminki,    University of Helsinki, Helsinki, Finland

Otto Hemminki,    University of Helsinki, Helsinki, Finland

Ronald B. Herberman,    Intrexon Corporation, Germantown, Maryland

Daniel Herendeen,    University of Washington, Seattle, Washington

Abraham Hochberg,    Hebrew University of Jerusalem, Jerusalem, Israel

James W. Hodge,    National Institutes of Health, Bethesda, Maryland

Gregory E. Holt,    University of Washington, Seattle, Washington

Ying Huang,    Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland

Insoo Hyun,    Case Western Reserve University School of Medicine, Cleveland, Ohio

Hong Jiang,    University of Texas M. D. Anderson Cancer Center, Houston, Texas

Shunsuke Kagawa,    Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Zahra Karjoo,    Rutgers, The State University of New Jersey, Piscataway, New Jersey

Howard Kaufman,    Rush University Medical Center, Chicago, Illinois

Chien-Chih Ke,    National Yang Ming University, Taipei, Taiwan

Hans-Peter Kiem,    Fred Hutchinson Cancer Research Center, Seattle, Washington

Jonathan Kimmelman,    McGill University, Montreal, Quebec, Canada

Sarah R. Klein,    University of Texas M. D. Anderson Cancer Center, Houston, Texas

Shinji Kuroda,    Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Seong Young Kwon,    Chonnam National University Medical School, Jeonnam, Republic of Korea

Nico Lachmann,    Research Group Reprogramming and Gene Therapy, REBIRTH Cluster-of-Excellence and Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany

Hermann Lage,    Institute of Pathology, Berlin, Germany

Martine L.M. Lamfers,    Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands

Edmund C. Lattime,    Rutgers Cancer Institute of New Jersey and Rutgers...

PDFPDF (Adobe DRM)
Größe: 34,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Introduction to Extant Primates

von Friderun Ankel-Simons

eBook Download (2024)
Elsevier Science (Verlag)
175,00