Arithmetical Similarities
Prime Decomposition and Finite Group Theory
Seiten
1998
Oxford University Press (Verlag)
978-0-19-853598-0 (ISBN)
Oxford University Press (Verlag)
978-0-19-853598-0 (ISBN)
This book deals with fundamental number theoretic questions and their interplay with finite group theory. It reports on the great progress achieved since 1970 through the joint effort of researchers in both areas. The book allows access to the results achieved so far and aims to increase the scientific exchange between number theory and group theory.
This book deals with the characterization of extensions of number fields in terms of the decomposition of prime ideals, and with the group-theoretic questions arising from this number-theoretic problem. One special aspect of this question is the equality of Dedekind zeta functions of different number fields. This is an established problem which was solved for abelian extensions by class field theory, but which was only studied in detail in its general form from around 1970. The basis for the new results was a fruitful exchange between number theory and group theory. Some of the outstanidng results are based on the complete classification of all finite simple groups. This book reports on the great progress achieved in this period. It allows access to the new developments in this part of algebraic number theory and contains a unique blend of number theory and group theory. The results appear for the first time in a monograph and they partially extend the published literature.
This book deals with the characterization of extensions of number fields in terms of the decomposition of prime ideals, and with the group-theoretic questions arising from this number-theoretic problem. One special aspect of this question is the equality of Dedekind zeta functions of different number fields. This is an established problem which was solved for abelian extensions by class field theory, but which was only studied in detail in its general form from around 1970. The basis for the new results was a fruitful exchange between number theory and group theory. Some of the outstanidng results are based on the complete classification of all finite simple groups. This book reports on the great progress achieved in this period. It allows access to the new developments in this part of algebraic number theory and contains a unique blend of number theory and group theory. The results appear for the first time in a monograph and they partially extend the published literature.
Introduction ; 1. Prime decomposition ; 2. Kronecker Equivalence ; 3. Arithmetical equivalence ; 4. Arithmetical homomorphisms ; 5. Kroneckerian fields ; 6. Variations
Erscheint lt. Verlag | 1.6.1998 |
---|---|
Reihe/Serie | Oxford Mathematical Monographs |
Zusatzinfo | 14 line figures |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 161 x 242 mm |
Gewicht | 575 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
ISBN-10 | 0-19-853598-8 / 0198535988 |
ISBN-13 | 978-0-19-853598-0 / 9780198535980 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95 €
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90 €
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00 €