Robust Subspace Estimation Using Low-Rank Optimization

Theory and Applications
Buch | Hardcover
VI, 114 Seiten
2014 | 2014
Springer International Publishing (Verlag)
978-3-319-04183-4 (ISBN)

Lese- und Medienproben

Robust Subspace Estimation Using Low-Rank Optimization - Omar Oreifej, Mubarak Shah
53,49 inkl. MwSt

Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

Introduction.- Background and Literature Review.- Seeing Through Water: Underwater Scene Reconstruction.- Simultaneous Turbulence Mitigation and Moving Object Detection.- Action Recognition by Motion Trajectory Decomposition.- Complex Event Recognition Using Constrained Rank Optimization.- Concluding Remarks.- Extended Derivations for Chapter 4.

Erscheint lt. Verlag 3.4.2014
Reihe/Serie The International Series in Video Computing
Zusatzinfo VI, 114 p. 41 illus., 39 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 350 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte activity recognition • complex event recognition • computer vision • Image Processing • low-rank optimization • machine learning • motion decomposition • Motion Estimation • particle advection • Principal Component Analysis • robust subspace estimation • seeing through water • Sparse Representation • turbulence mitigation • video denoising
ISBN-10 3-319-04183-5 / 3319041835
ISBN-13 978-3-319-04183-4 / 9783319041834
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95