Recommender Systems for Location-based Social Networks

Buch | Softcover
108 Seiten
2014
Springer-Verlag New York Inc.
978-1-4939-0285-9 (ISBN)

Lese- und Medienproben

Recommender Systems for Location-based Social Networks - Panagiotis Symeonidis, Dimitrios Ntempos, Yannis Manolopoulos
53,49 inkl. MwSt
Online social networks collect information from users' social contacts and their daily interactions (co-tagging of photos, co-rating of products etc.) to provide them with recommendations of new products or friends. Lately, technological progressions in mobile devices (i.e. smart phones) enabled the incorporation of geo-location data in the traditional web-based online social networks, bringing the new era of Social and Mobile Web. The goal of this book is to bring together important research in a new family of recommender systems aimed at serving Location-based Social Networks (LBSNs). The chapters introduce a wide variety of recent approaches, from the most basic to the state-of-the-art, for providing recommendations in LBSNs.

The book is organized into three parts. Part 1 provides introductory material on recommender systems, online social networks and LBSNs. Part 2 presents a wide variety of recommendation algorithms, ranging from basic to cutting edge, as well as a comparison of the characteristics of these recommender systems. Part 3 provides a step-by-step case study on the technical aspects of deploying and evaluating a real-world LBSN, which provides location, activity and friend recommendations. The material covered in the book is intended for graduate students, teachers, researchers, and practitioners in the areas of web data mining, information retrieval, and machine learning.

Introduction.- Recommender Systems.- Online Social Networks.- Location-based Social Networks.- Framework.- Algorithms.- Comparison.- Real Geo-social Recommender Systems.- Conclusions.

Erscheint lt. Verlag 8.2.2014
Reihe/Serie SpringerBriefs in Electrical and Computer Engineering
Zusatzinfo 33 Illustrations, color; 8 Illustrations, black and white; V, 108 p. 41 illus., 33 illus. in color.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-4939-0285-7 / 1493902857
ISBN-13 978-1-4939-0285-9 / 9781493902859
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90