Elementary Methods in Number Theory - Melvyn B. Nathanson

Elementary Methods in Number Theory

Buch | Softcover
514 Seiten
2013 | Softcover reprint of the original 1st ed. 2000
Springer-Verlag New York Inc.
978-1-4757-7392-7 (ISBN)
60,98 inkl. MwSt
Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets.

A First Course in Number Theory.- Divisibility and Primes.- Congruences.- Primitive Roots and Quadratic Reciprocity.- Fourier Analysis on Finite Abelian Groups.- The abc Conjecture.- Divisors and Primes in Multiplicative Number Theory.- Arithmetic Functions.- Divisor Functions.- Prime Numbers.- The Prime Number Theorem.- Primes in Arithmetic Progressions.- Three Problems in Additive Number Theory.- Waring’s Problem.- Sums of Sequences of Polynomials.- Liouville’s Identity.- Sums of an Even Number of Squares.- Partition Asymptotics.- An Inverse Theorem for Partitions.

Reihe/Serie Graduate Texts in Mathematics ; 195
Zusatzinfo XVIII, 514 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4757-7392-7 / 1475773927
ISBN-13 978-1-4757-7392-7 / 9781475773927
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00