Mathematische Analyse des Raumproblems
Springer Berlin (Verlag)
978-3-642-90574-2 (ISBN)
Hermann Weyl (1885 - 1955), deutscher Mathematiker. Er lehrte in Göttingen, an der ETH in Zürich und, durch Vermittlung von Albert Einstein, bis 1951 am Institute for Advanced Study in Princeton.
I. Einleitung.- 1. Vorlesung: Das Raumproblem in Philosophie und Mathematik. Elementare Axiomatik.- II. Infinitesimalgeometrie.- 2. Vorlesung: Grundlagen der Riemannschen Geometrie. Begriff der Parallelverschiebung.- 3. Vorlesung: Das metrische Kontinuum. Projektive und konforme Beschaffenheit. Beantwortung der Frage: Woran erkennt man die Riemannsche Natur eines metrischen Raums?.- 4. Vorlesung: Charakterisierung des Euklidischen Raums unter den affin zusammenhängenden und den metrischen Räumen. Konstruktion der homogenen metrischen Räume.- III. Gruppentheoretische Analyse des Raumproblems a) Standpunkt von Euklid -Helmholtz: Die metrische Struktur ist fest, absolut und a priori (5. und 6. Vorlesung).- 5. Vorlesung: Das Helmholtzsche Raumproblem, seine Zurückführung auf einen gruppentheoretischen Satz über lineare Transformationen. Grundbegriffe von Lies Theorie der kontinuierlichen Gruppen.- 6. Vorlesung: Beweis des Satzes über Gruppen linearer Transformationen (Charakterisierung der Euklidischen Drehungsgruppe durch die freie Beweglichkeit des Vektorkörpers).- b) Standpunkt von Riemann-Einstein: Die metrische Struktur ist veränderlich und a posteriori (7. und 8. Vorlesung).- 7. Vorlesung: Der neue Standpunkt. Allgemeine gruppentheoretische Auffassung der Metrik. Das neue Raumproblem und die charakteristischen Eigenschaften der infinitesimalen Drehungsgruppe.- 8. Vorlesung: Skizzierung des Beweises.- Zusätze.- 2. Formeln für die Änderung des affinen Zusammenhangs bei ungeänderter projektiver Beschaffenheit.- 3. Strenge Herleitung der Streckenkrümmung. Theorie der totalen Differentialgleichungen: Integrabilitätsbedingungen, Konstruktion der Lösung.- 7. Kongruente Abbildungen der Kugel auf sich selber.- 8. Allgemeine Theorie der kontinuierlichen Gruppen:Konstruktion aus den infinitesimalen Operationen; Konstitution der abstrakten Gruppe.- 10. Ähnliche Abbildungen.- 12. Vollständiger Beweis des gruppentheoretischen Hauptsatzes der 8. Vorlesung.- Theorie der einzelnen Matrix (Elementarteilertheorie).- Konstruktion der Ausgangsmatrix.- Aufbau der Gruppe im Falle (II).- Aufbau der Gruppe im Falle (I).- Literatur.- Namen- und Sachverzeichnis.
Erscheint lt. Verlag | 1.1.1923 |
---|---|
Zusatzinfo | VIII, 120 S. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 170 x 244 mm |
Gewicht | 241 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Beweis • Differentialgleichung • Endlichkeit • Geometrie • Gleichung • Mathematik • Philosophie |
ISBN-10 | 3-642-90574-9 / 3642905749 |
ISBN-13 | 978-3-642-90574-2 / 9783642905742 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich