Fourier Series - R. E. Edwards

Fourier Series

A Modern Introduction Volume 2

(Autor)

Buch | Softcover
369 Seiten
2011 | 2nd ed. 1982. Softcover reprint of the original 2nd ed. 1982
Springer-Verlag New York Inc.
978-1-4613-8158-7 (ISBN)
85,59 inkl. MwSt
The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; A few of the research papers listed cover devel­ opments that came to my notice too late for mention in the main text.
appear in Volume 1, a Roman numeral "I" has been prefixed as a reminder to the reader; thus, for example, "I,B.2.1 " refers to Appendix B.2.1 in Volume 1. An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibli­ ography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover devel­ opments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examin­ ation of the bibliography and by scrutiny of the usual review literature.

11 Spans of Translates. Closed Ideals. Closed Subalgebras. Banach Algebras.- 11.1 Closed Invariant Subspaces and Closed Ideals.- 11.2 The Structure of Closed Ideals and Related Topics.- 11.3 Closed Subalgebras.- 11.4 Banach Algebras and Their Applications.- Exercises.- 12 Distributions and Measures.- 12.1 Concerning C?.- 12.2 Definition and Examples of Distributions and Measures.- 12.3 Convergence of Distributions.- 12.4 Differentiation of Distributions.- 12.5 Fourier Coefficients and Fourier Series of Distributions.- 12.6 Convolutions of Distributions.- 12.7 More about M and Lp.- 12.8 Hilbert’s Distribution and Conjugate Series.- 12.9 The Theorem of Marcel Riesz.- 12.10 Mean Convergence of Fourier Series in LP (1 < p < ?).- 12.11 Pseudomeasures and Their Applications.- 12.12 Capacities and Beurling’s Problem.- 12.13 The Dual Form of Bochner’s Theorem.- Exercises.- 13 Interpolation Theorems.- 13.1 Measure Spaces.- 13.2 Operators of Type (p, q).- 13.3 The Three Lines Theorem.- 13.4 The Riesz-Thorin Theorem.- 13.5 The Theorem of Hausdorff-Young.- 13.6 An Inequality of W. H. Young.- 13.7 Operators of Weak Type.- 13.8 The Marcinkiewicz Interpolation Theorem.- 13.9 Application to Conjugate Functions.- 13.10 Concerning ?*f and s*f.- 13.11 Theorems of Hardy and Littlewood, Marcinkiewicz and Zygmund.- Exercises.- 14 Changing Signs of Fourier Coefficients.- 14.1 Harmonic Analysis on the Cantor Group.- 14.2 Rademacher Series Convergent in L2(?).- 14.3 Applications to Fourier Series.- 14.4 Comments on the Hausdorff-Young Theorem and Its Dual.- 14.5 A Look at Some Dual Results and Generalizations.- Exercises.- 15 Lacunary Fourier Series.- 15.1 Introduction of Sidon Sets.- 15.2 Construction and Examples of Sidon Sets.- 15.3 Further Inequalities Involving Sidon Sets.-15.4 Counterexamples concerning the Parseval Formula and Hausdorff-Young Inequalities.- 15.5 Sets of Type (p, q) and of Type ?(p).- 15.6 Pointwise Convergence and Related Matters.- 15.7 Dual Aspects: Helson Sets.- 15. 8 Other Species of Lacunarity.- Exercises.- 16 Multipliers.- 16.1 Preliminaries.- 16.2 Operators Commuting with Translations and Convolutions; m-operators.- 16.3 Representation Theorems for m-operators.- 16.4 Multipliers of Type (LP, Lq).- 16.15 A Theorem of Kaczmarz—Stein.- 16.6 Banach Algebras Applied to Multipliers.- 16.7 Further Developments.- 16.8 Direct Sum Decompositions and Idempotent Multipliers.- 16.9 Absolute Multipliers.- 16.10 Multipliers of Weak Type (p, p).- Exercises.- Research Publications.- Corrigenda to 2nd (Revised) Edition of Volume 1.- Symbols.

Reihe/Serie Graduate Texts in Mathematics ; 85
Zusatzinfo 369 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Sachbuch/Ratgeber Natur / Technik Garten
Mathematik / Informatik Mathematik Algebra
Schlagworte Fourier • series
ISBN-10 1-4613-8158-4 / 1461381584
ISBN-13 978-1-4613-8158-7 / 9781461381587
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Obst- und Ziergehölze, Stauden, Kübel- und Zimmerpflanzen richtig …

von Hansjörg Haas

Buch | Hardcover (2023)
Gräfe und Unzer (Verlag)
34,00
ganzjährig attraktive Beete bei Hitze und Trockenheit

von Bernd Hertle

Buch | Hardcover (2023)
Gräfe und Unzer Verlag GmbH
19,99