Advanced Integration Theory
Springer (Verlag)
978-94-010-3739-6 (ISBN)
Suggestion to the Reader.- 0 Preliminaries.- Vector Lattices.- 1.1 Ordered Vector Spaces.- 1.2 Vector Lattices.- 1.3 Substructures, Quotients, Products.- 1.4 Bands and Orthogonality.- 1.5 Homomorphisms.- 1.6 The Order Dual of a Vector Lattice.- 1.7 Continuous Functionals.- 1.8 Order and Topology.- 1.9 Metric Spaces and Banach Spaces.- 1.10 Banach Lattices.- 1.11 Hilbert Lattices.- 1.12 Lattice Products.- Elementary Integration Theory.- 2.1 Riesz Lattices.- 2.2 Daniell Spaces.- 2.3 The Closure of a Daniell Space.- 2.4 The Integral for a Daniell Space.- 2.5 Systems of Sets, Step Functions, and Stone Lattices.- 2.6 Positive Measures.- 2.7 Closure, Completion, and Integrals for Positive Measure Spaces.- 2.8 Measurable Spaces and Measurability.- 2.9 Measurability versus Integrability.- 2.10 Stieltjes Functionals and Stieltjes Measures. Lebesgue Measure.- 3 Lp-Spaces.- 3.1 Classes modulo ?, and Convergence in Measure.- 3.2 The Hölder and Minkowski Inequalities and the Lp-Spaces.- 3.3 Lp-Spaces for 0< p< ?.- 3.4 Uniform integrability and the Generalized Lebesgue Convergence Theorem.- 3.5 Localization.- 3.6 Products and Lp?.- Real Measures.- 4.1 Nullcontinuous Functionals.- 4.2 Real Measures and Spaces of Real Measures.- 4.3 Integrals for Real Measures.- 4.4 Bounded Measures.- 4.5 Atomic and Atomless Measures.- The Radon-Nikodym Theorem. Duality.- 5.1 Absolute Continuity.- 5.2 The Theorem of Radon-Nikodym.- 5.3 Duality for Function Spaces.- 6 The Classical Theory of Real Functions.- 6.1 Functions of Locally Finite Variation.- 6.2 Real Stieltjes Measures.- 6.3 Absolutely Continuous Functions.- 6.4 Vitali?s Covering Theorem.- 6.5 Differentiable Functions.- 6.6 Spaces of Multiply Differentiable Functions.- 6.7 Riemann-Stieltjes Integrals.- Historical Remarks.- Name Index.-Symbol Index.
Reihe/Serie | Mathematics and Its Applications ; 454 | Mathematics and Its Applications ; 454 |
---|---|
Mitarbeit |
Sonstige Mitarbeit: Alexia Sontag |
Zusatzinfo | XXIV, 876 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
ISBN-10 | 94-010-3739-6 / 9401037396 |
ISBN-13 | 978-94-010-3739-6 / 9789401037396 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich