Fractals in Petroleum Geology and Earth Processes -

Fractals in Petroleum Geology and Earth Processes

C.C. Barton, P.R. La Pointe (Herausgeber)

Buch | Softcover
317 Seiten
2012 | Softcover reprint of the original 1st ed. 1995
Springer-Verlag New York Inc.
978-1-4613-5733-9 (ISBN)
213,99 inkl. MwSt
In this unique volume, renowned experts discuss the applications of fractals in petroleum research-offering an excellent introduction to the subject. Contributions cover a broad spectrum of applications from petroleum exploration to production. Papers also illustrate how fractal geometry can quantify the spatial heterogeneity of different aspects of geology and how this information can be used to improve exploration and production results.

1 Statistics of Natural Resources and the Law of Pareto.- 1.1. Foreword.- 1.2. Introduction.- 1.3. Possible Paretian Triggers of the Economic Distributions Can Be Found in the Physical Sciences.- 1.4. Remarks Concerning the Use of the Lognormal Distribution.- 1.5. Historical Footnote.- 1.6. Relation between the Paretian Distributions of Natural Resources and the Return to Equilibrium in a Random Walk.- 1.7 Conclusion.- Acknowledgment.- References.- 2 The Fractal Size and Spatial Distribution of Hydrocarbon Accumulations: Implications for Resource Assessment and Exploration Strategy.- 2.1. Introduction.- 2.2. Size-Frequency Distributions.- 2.3. Spatial Distribution.- 2.4. Summary and Conclusion.- Acknowledgments.- References.- 3 Estimation of Undiscovered Hydrocarbon Potential through Fractal Geometry.- 3.1. Introduction.- 3.2. Assessment Methodology.- 3.3. Applications to Simulated Data.- 3.4. Application to Actual Data.- 3.5. Conclusions.- References.- 4 Fractals and the Pareto Distribution Applied to Petroleum Accumulation-Size Distributions.- 4.1. Introduction.- 4.2. Fractals.- 4.3. Example.- 4.4. Conclusions.- Appendix: Selected Nomenclature.- References.- 5 Fractal and Multifractal Models and Methods in Stratigraphy.- 5.1. Introduction.- 5.2. The Fractal Description of Stratigraphic Sections.- 5.3. Techniques for the Analysis of Fractal Series.- 5.4. Fractal Models.- 5.5. Examples.- 5.6. Discussion.- Acknowledgments.- References.- 6 On the Scale Independent Shape of Prograding Stratigraphic Units: Applications to Sequence Stratigraphy.- 6.1. Introduction.- 6.2. General Condition for Time-Invariant Clinoform Surface Progradation.- 6.3. Clinoforms of Arbitrarily Complex Shape.- 6.4. Tangential Oblique Clinoforms.- 6.5. Parallel Oblique Clinoforms.- 6.6. Sigmoid Clinoforms.- 6.7. Tangential Erosional Clinoforms.- 6.8. Fractal Clinoforms.- 6.9. Conclusions.- References.- 7 New Models Require New Data: Fractal and Multifractal Measures of Gravel Bedload.- 7.1. Introduction.- 7.2. Characteristics of Gravel-Bed Rivers.- 7.3. Methods of Bedload Sampling.- 7.4. Study Site and Methods.- 7.5. Analysis of Time Series Data.- 7.6. Multifractal Measures of Bedload Transport.- 7.7. Discussion.- Acknowledgments.- References.- 8 Erosional Development of the Ethiopian Plateau of Northeast Africa from a Fractal Analysis of Topography.- 8.1. Introduction.- 8.2. Flexural Rift Flank Uplift as a Tectonic Initiator of Erosion.- 8.3. Fractal Analysis of Ethiopian Rift Flank Topography.- 8.4. Discussion.- 8.5. Conclusion.- Acknowledgments.- References.- 9 Hierarchical Cascades and the Single Fracture: Percolation and Seismic Detection.- 9.1. Introduction.- 9.2. Hydraulic and Mechanical Data.- 9.3. Fractal Flow Patterns.- 9.4. Stratified Continuum Percolation.- 9.5. Conservation of Volume During Deformation.- 9.6. Fluid Row Dependence on Mechanical Displacement.- 9.7. Applications of Stratified Continuum Percolation.- 9.8. Conclusions.- Acknowledgments.- References.- 10 Fractal Patterns in Porous Media Flow: Modeling of Laboratory Experiments.- 10.1. Introduction.- 10.2. Fractal Concepts.- 10.3. Theory.- 10.4. Experimental Techniques.- 10.5. Experiments.- 10.6. Conclusions.- Acknowledgments.- References.- 11 Diffusion-Limited Aggregation in the Earth Sciences.- 11.1. Introduction.- 11.2. The DLA Model.- 11.3. DLA and the Laplace Equation.- 11.4. Applications in the Earth Sciences.- 11.5. Significance to Petroleum Geology and Hydrology.- 11.6. Discussion.- Acknowledgments.- References.- 12 Creating Reservoir Simulations with Fractal Characteristics.- 12.1. Introduction.- 12.2. Fractal Reservoir Characterization.- 12.3. Future Directions.- References.- 13 Vertical versus Horizontal Well Log Variability and Application to Fractal Reservoir Modeling.- 13.1. Introduction.- 13.2. Fractal Distributions.- 13.3. Field Data Analysis.- 13.4. Fractal Generation Techniques.- 13.5. Conditioning.- 13.6. Simulations.- 13.7. Conclusions.- Acknowledgments.- References.- 14 Fractals and Exploration Geophysics: Seismic Deconvolution and Geophysical Inverse Problems.- 14.1. Introduction.- 14.2. Scaling Noises.- 14.3. Results from Well Logs.- 14.4. Autocovariance of Scaling Noises.- 14.5. Deconvolution in Reflection Seismology.- 14.6. Geophysical Inversion.- 14.7. Conclusions.- References.

Zusatzinfo XXIII, 317 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Technik Maschinenbau
ISBN-10 1-4613-5733-0 / 1461357330
ISBN-13 978-1-4613-5733-9 / 9781461357339
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95