Genetic Programming Theory and Practice X (eBook)
XXVI, 242 Seiten
Springer New York (Verlag)
978-1-4614-6846-2 (ISBN)
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP.
Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data.
Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Evolving SQL Queries from Examples with Developmental Genetic Programming.- A Practical Platform for On-Line Genetic Programming for Robotics.- Cartesian Genetic Programming for Image Processing.- A new mutation paradigm for Genetic Programming.- Introducing an Age-Varying Fitness Estimation Function.- EC-Star: A Massive-Scale, Hub and Spoke, Distributed Genetic Programming System.- Genetic Analysis of Prostate Cancer Using Computational Evolution, Pareto-Optimization and Post-Processing.- Meta-dimensional analysis of phenotypes using the Analysis Tool for Heritable and Environmental Network Associations.- A Baseline Symbolic Regression Algorithm.- Symbolic Regression Model Comparison Approach Using Transmitted Variation.- A Framework for the Empirical Analysis of Genetic Programming System Performance.- More or Less? Two Approaches to Evolving Game-Playing Strategies.- Symbolic Regression is Not Enough.- FlexGP.py: Prototyping Flexibly-Scaled, Flexibly-Factored Genetic Programming for the Cloud.- Representing Communication and Learning in Femtocell Pilot Power Control Algorithms.
Erscheint lt. Verlag | 24.5.2013 |
---|---|
Reihe/Serie | Genetic and Evolutionary Computation | Genetic and Evolutionary Computation |
Zusatzinfo | XXVI, 242 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Algorithmen | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Artificial Evolution • Evolution of Models • Feature Selection • Genetic Programing Applications • genetic programming • Genetic Programming Theory • program induction • Symbolic Regression |
ISBN-10 | 1-4614-6846-9 / 1461468469 |
ISBN-13 | 978-1-4614-6846-2 / 9781461468462 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich