Lie Groups: Structure, Actions, and Representations (eBook)

In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday
eBook Download: PDF
2013 | 2013
XIV, 413 Seiten
Springer New York (Verlag)
978-1-4614-7193-6 (ISBN)

Lese- und Medienproben

Lie Groups: Structure, Actions, and Representations -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf's broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume.  Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis.

 

Contributors

 

D. Akhiezer                         T. Oshima

A. Andrada                         I. Pacharoni

M. L. Barberis                    F. Ricci

L. Barchini                            S. Rosenberg

I. Dotti                                  N. Shimeno

M. Eastwood                     J. Tirao

V. Fischer                            S. Treneer

T. Kobayashi                       C.T.C. Wall

A. Korányi                           D. Wallace

B. Kostant                           K. Wiboonton

P. Kostelec                          F. Xu

K.-H. Neeb                          O. Yakimova

G. Olafsson                         R. Zierau

B. Ørsted


Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf's broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume. Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis. Contributors D. Akhiezer T. OshimaA. Andrada I. PacharoniM. L. Barberis F. RicciL. Barchini S. RosenbergI. Dotti N. ShimenoM. Eastwood J. TiraoV. Fischer S. TreneerT. Kobayashi C.T.C. WallA. Koranyi D. WallaceB. Kostant K. WiboontonP. Kostelec F. XuK.-H. Neeb O. YakimovaG. Olafsson R. ZierauB. orsted

Preface.- Real group orbits on flag manifolds.- Complex connections with trivial holonomy.- Indefinite harmonic theory and harmonic spinors.- Twistor theory and the harmonic hull.- Nilpotent Gelfand pairs and spherical transforms of Schwartz functions, II: Taylor expansions on singular sets.- Propagation of the multiplicity-freeness property for holomorphic vector bundles.- Poisson transforms for line bundles from the Shilov boundary to bounded symmetric domains.- Cent(U(n)), cascade of orthogonal roots, and a construction of Lipsman–Wolf.- Weakly harmonic Maaß forms and the principal series for SL(2,R).- Holomorphic realization of unitary representations of Banach-Lie groups.- The Segal–Bargmann transform on compact symmetric spaces and their direct limits.- Analysis on flag manifolds and Sobolev inequalities.- Boundary value problems on Riemannian symmetric spaces of noncompact type.- One step spherical functions of the pair (SU(n + 1), U(n)).- Chern–Weil theory for certain infinite-dimensional Lie groups.- On the structure of finite groups with periodic cohomology.

Erscheint lt. Verlag 4.8.2013
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo XIV, 413 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte differentiable manifold • Hilbert's problems • Lie Theory • Lorentz Group • Representation Theory
ISBN-10 1-4614-7193-1 / 1461471931
ISBN-13 978-1-4614-7193-6 / 9781461471936
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich