Collected Papers

(Autor)

Lars Gårding, Lars Hörmander (Herausgeber)

Buch | Softcover
VIII, 897 Seiten
2013
Springer Berlin (Verlag)
978-3-642-34603-3 (ISBN)

Lese- und Medienproben

Collected Papers - Marcel Riesz
69,54 inkl. MwSt
Marcel Riesz (1886-1969) was the younger of the famed pair of mathematicians and brothers. Although Hungarian he spent most of his professional life in Sweden. He worked on summability theory, analytic functions, the moment problem, harmonic and functional analysis, potential theory and the wave equation. The depth of his research and the clarity of his writing place his work on the same level as that of his brother Frédéric Riesz. This edition of his Collected Papers contains most of Marcel Riesz's published papers with the exception of a few papers in Hungarian that were subsumed into later books. It also includes a translation by J. Horváth of Riesz's thesis on summable trigonometric series and summable power series. They are thus a valuable reference work for libraries and for researchers.

Marcel Riesz (16 November 1886 – 4 September 1969) was a Hungarian-born mathematician, known for work on summation methods, potential theory, and other parts of analysis, as well as number theory, partial differential equations, and Clifford algebras. He spent most of his career in Lund (Sweden). He was born in Győr, Hungary (Austria-Hungary); he was the younger brother of the mathematician Frigyes Riesz. He obtained his PhD at Eötvös Loránd University under the supervision of Lipót Fejér. In 1911, he moved to Sweden upon the invitation of Gösta Mittag-Leffler. From 1911 to 1925 he taught at Stockholms högskola (now Stockholm University). From 1926 to 1952 he was professor at Lund University. After retiring, he spent 10 years at universities in the United States. He returned to Lund in 1962, and died there in 1969. Riesz was elected a member of the Royal Swedish Academy of Sciences in 1936.

Marcel Riesz in Memoriam.- Summable Trigonometric Series and Summable Power Series.- Sur les Séries Trigonométriques.- Sur les Séries de Dirichlet.- Sur la Sommation Des Séries de Dirichlet.- Sur Les Séries de Dirichlet et Les Séries Entières.- Sur un Probleme d' Abel.- Une Méthode de Sommation Équivalente à la Méthode des Moyennes Arithmétiques.- Über einen Satz des Herm Fatou.- Über Summierbare Trigonometrische Reihen.- Sur Ia représentation analytique des fonctions définies par des séries de Dirichlet.- Formule d'interpolation pour la dérivée d'un polynome trigonométrique.- Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome.- Neuer Beweis des Fatouschen Satzes.- Sätze über Potenzreihen.- Sur I'hypothèse de Riemann.- Über einen Satz des Herrn Serge Bernstein.- Ein Konvergenzsatz fiir Dirichletsche Reihen.- Über die Randwerte einer analytiscben Funktion.- Sur le principe de Phragmén-Lindelöf.- Sur Ie problème des moments.- Sur la sommation des séries de Fourier.- Sur un théorème de la moyenne et ses applications.- Sur le problème des moments et le théorème de Parseval correspondant.- Sur l'équivalence de certaines méthodes de sommation.- Les fonctions conjuguées et les séries de Fourier.- Über die Summierbarkeit durch typische Mittel.- Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires.- Sur les fonctions conjuguées.- Sur certaines inégalites dans la théorie des fonctions avec quelques remarques sur les géometries non-euclidiennes.- Sur les ensembles compacts de fonctions sommables.- Zum Eindeutigkeitssatz der fastperiodischeu Funktionen.- Eine Bemerkung über den Eindeutigkeitssatz der Theorie der fastperiodischen Funktionen.- Intégrale de Riemann-Liouvilleet solution invariantive du probléme de Cauchy pour l'équation des ondes.- Modules réciproques.- Potentiels de divers ordres et leurs fonctions de Green.- Volumes mixtes et facteurs invariants dans la théorie des modules.- Integrales de Riemann-Liouville et Potentiels.- L'integrale de Riemann-Liouville et le Probleme de Cauchy Pour l'equation Des Ondes.- Sur Certaines Notions Fondamentales en Théorie Quantique Relativiste.- L'intégrale de Riemann-Liouville et le Problème de Cauchy.- Remarque Sur Les Fonctions Holomorphes.- Sur le Potentiel de Liénard-Wiechert Attaché à Une Ligne d'univers.- Sur le potentiel retardé attaché á un courant continu.- Sur le lemme de ZolotaretT et sur la loi de réciprocité des restes quadratiques.- L'équation de Dirac en relativité générale.- Problems related to characteristic surfaces.- A special characteristic surface-a new relativistic model for a particle?.- A geometric solution of the wave equation in space-time of even dimension.- The Analytical Continuation of the Riemann-Liouville Integral in the Hyperbolic Case.

Erscheint lt. Verlag 13.8.2013
Reihe/Serie Springer Collected Works in Mathematics
Zusatzinfo VIII, 897 p. 5 illus. With Reprint 2013 from the 1988 edition.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1365 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geschichte der Mathematik
Schlagworte Clifford Algebras • matrix theory • MSC2010: 01-XX, 15-XX, 30-XX • Number Theory • Partial differential equations • Potential Theory • summation methods
ISBN-10 3-642-34603-0 / 3642346030
ISBN-13 978-3-642-34603-3 / 9783642346033
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich