Morse Homology
Springer Basel (Verlag)
978-3-0348-9688-7 (ISBN)
1 Introduction.- 1.1 Background.- 1.2 Overview.- 1.3 Remarks on the Methods.- 1.4 Table of Contents.- 1.5 Acknowledgments.- 2 The Trajectory Spaces.- 2.1 The Construction of the Trajectory Spaces.- 2.2 Fredholm Theory.- 2.3 Transversality.- 2.4 Compactness.- 2.5 Gluing.- 3 Orientation.- 3.1 Orientation and Gluing in the Trivial Case.- 3.2 Coherent Orientation.- 4 Morse Homology Theory.- 4.1 The Main Theorems of Morse Homology.- 4.2 The Eilenberg-Steenrod Axioms.- 4.3 The Uniqueness Result.- 5 Extensions.- 5.1 Morse Cohomology.- 5.2 Poincaré Duality.- 5.3 Products.- A Curve Spaces and Banach Bundles.- B The Geometric Boundary Operator.
"The proofs are written with great care, and Schwarz motivates all ideas with great skill...This is an excellent book."
- Bulletin of the AMS
Erscheint lt. Verlag | 8.10.2012 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | IX, 236 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 391 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Analysis • Calculus • Finite • Function • Geometry • manifold • Morphism • Proof • Theorem • Topology |
ISBN-10 | 3-0348-9688-3 / 3034896883 |
ISBN-13 | 978-3-0348-9688-7 / 9783034896887 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich