The N-Vortex Problem - Paul K. Newton

The N-Vortex Problem

Analytical Techniques

(Autor)

Buch | Hardcover
420 Seiten
2001
Springer-Verlag New York Inc.
978-0-387-95226-0 (ISBN)
106,99 inkl. MwSt
Suitable for applied mathematicians, physicists, and engineers interested in either nonlinear dynamics or classical mechanics and fluid dynamics. This book describes the Hamiltonian aspects of vortex dynamics.
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.

Preface.- 1 Introduction.- 1.1 Vorticity Dynamics.- 1.2 Hamiltonian Dynamics.- 1.3 Summary of Basic Questions.- 1.4 Exercises.- 2 N Vortices in the Plane.- 2.1 General Formulation.- 2.2 N = 3.- 2.3 N = 4.- 2.4 Bibliographic Notes.- 2.5 Exercises.- 3 Domains with Boundaries.- 3.1 Green’s Function of the First Kind.- 3.2 Method of Images.- 3.3 Conformai Mapping Techniques.- 3.4 Breaking Integrability.- 3.5 Bibliographic Notes.- 3.6 Exercises.- 4 Vortex Motion on a Sphere.- 4.1 General Formulation.- 4.2 Dynamics of Three Vortices.- 4.3 Phase Plane Dynamics.- 4.4 3-Vortex Collapse.- 4.5 Stereographic Projection.- 4.6 Integrable Streamline Topologies.- 4.7 Boundaries.- 4.8 Bibliographic Notes.- 4.9 Exercises.- 5 Geometric Phases.- 5.1 Geometric Phases in Various Contexts.- 5.2 Phase Calculations For Slowly Varying Systems.- 5.3 Definition of the Adiabatic Hannay Angle.- 5.4 3-Vortex Problem.- 5.5 Applications.- 5.6 Exercises.- 6 Statistical Point Vortex Theories.- 6.1 Basics of Statistical Physics.- 6.2 Statistical Equilibrium Theories.- 6.3 Maximum Entropy Theories.- 6.4 Nonequilibrium Theories.- 6.5 Exercises.- 7 Vortex Patch Models.- 7.1 Introduction to Vortex Patches.- 7.2 The Kida-Neu Vortex.- 7.3 Time-Dependent Strain.- 7.4 Melander-Zabusky-Styczek Model.- 7.5 Geometric Phase for Corotating Patches.- 7.6 Viscous Shear Layer Model.- 7.7 Bibliographic Notes.- 7.8 Exercises.- 8 Vortex Filament Models.- 8.1 Introduction to Vortex Filaments and the LIE.- 8.2 DaRios-Betchov Intrinsic Equations.- 8.3 Hasimoto’s Transformation.- 8.4 LIA Invariants.- 8.5 Vortex-Stretching Models.- 8.6 Nearly Parallel Filaments.- 8.7 The Vorton Model.- 8.8 Exercises.- References.

Reihe/Serie Applied Mathematical Sciences ; 145
Zusatzinfo XVIII, 420 p.
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Mechanik
Naturwissenschaften Physik / Astronomie Strömungsmechanik
ISBN-10 0-387-95226-8 / 0387952268
ISBN-13 978-0-387-95226-0 / 9780387952260
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36