Prime-Detecting Sieves. (LMS-33) (eBook)
384 Seiten
Princeton University Press (Verlag)
978-1-4008-4593-4 (ISBN)
Glyn Harman is professor of pure mathematics at the University of London, Royal Holloway. He is the author of Metric Number Theory, the coeditor of Sieve Methods, Exponential Sums, and their Applications in Number Theory, and the corecipient of the Hardy-Ramanujan award for his work on primes in short intervals.
Glyn Harman is professor of pure mathematics at the University of London, Royal Holloway. He is the author of Metric Number Theory, the coeditor of Sieve Methods, Exponential Sums, and their Applications in Number Theory, and the corecipient of the Hardy-Ramanujan award for his work on primes in short intervals.
Erscheint lt. Verlag | 26.11.2012 |
---|---|
Reihe/Serie | London Mathematical Society Monographs | London Mathematical Society Monographs |
Zusatzinfo | 10 line illus. 9 tables. |
Verlagsort | Princeton |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Technik | |
Schlagworte | Accuracy and precision • Addition • algebraic number • algebraic number field • algebraic number theory • analytic continuation • Analytic number theory • aphorism • Approximation • Arbitrarily large • Arithmetic function • arithmetic progression • Asymptote • asymptotic formula • Basis (linear algebra) • Bernhard Riemann • Big O notation • bilinear form • Bombieri's theorem • Bombieri–Vinogradov theorem • Calculation • Carmichael number • Characteristic function (probability theory) • Chen's theorem • combination • Complex Analysis • complex number • complex plane • conjecture • continuous function • Coprime integers • Coxeter Group • Dedekind domain • Diagram (category theory) • Dimension • Diophantine approximation • Dirichlet character • Dirichlet L-function • Dirichlet series • Divisor function • Elliott–Halberstam conjecture • empty set • Error Term • estimation • exponential function • Factorization • Fermat's Last Theorem • fourier analysis • Fractional part • fundamental theorem • Gaussian Integer • generalized Riemann hypothesis • Goldbach's conjecture • Hardy–Littlewood circle method • Heaviside step function • Hecke character • Hecke L-function • Ideal number • Identity (mathematics) • imaginary number • Integer • integral domain • Iteration • Large sieve • L-Function • logarithm • Mathematics • mean value theorem • modular arithmetic • Multiplicative function • Multiplicative Number Theory • Natural number • Notation • Number Theory • Numerical Integration • orthogonality • Parameter • polynomial • Primality test • prime factor • Prime Ideal • Prime number • prime number theorem • Probability • Proportionality (mathematics) • quadratic function • Riemann hypothesis • Riemann zeta function • Series expansion • Siegel zero • Sieve of Eratosthenes • Square-free integer • Subset • Summation • Theorem • Twin prime • Unique factorization domain • Upper and lower bounds • Variable (mathematics) • Von Mangoldt function |
ISBN-10 | 1-4008-4593-9 / 1400845939 |
ISBN-13 | 978-1-4008-4593-4 / 9781400845934 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich