Introduction to Data Mining: Pearson New International Edition
Pearson Education Limited (Verlag)
978-1-292-02615-2 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
1 Introduction
1.1 What is Data Mining?
1.2 Motivating Challenges
1.3 The Origins of Data Mining
1.4 Data Mining Tasks
1.5 Scope and Organization of the Book
1.6 Bibliographic Notes
1.7 Exercises
2 Data
2.1 Types of Data
2.2 Data Quality
2.3 Data Preprocessing
2.4 Measures of Similarity and Dissimilarity
2.5 Bibliographic Notes
2.6 Exercises
3 Exploring Data
3.1 The Iris Data Set
3.2 Summary Statistics
3.3 Visualization
3.4 OLAP and Multidimensional Data Analysis
3.5 Bibliographic Notes
3.6 Exercises
4 Classification: Basic Concepts, Decision Trees, and Model Evaluation
4.1 Preliminaries
4.2 General Approach to Solving a Classification Problem
4.3 Decision Tree Induction
4.4 Model Overfitting
4.5 Evaluating the Performance of a Classifier
4.6 Methods for Comparing Classifiers
4.7 Bibliographic Notes
4.8 Exercises
5 Classification: Alternative Techniques
5.1 Rule-Based Classifier
5.2 Nearest-Neighbor Classifiers
5.3 Bayesian Classifiers
5.4 Artificial Neural Network (ANN)
5.5 Support Vector Machine (SVM)
5.6 Ensemble Methods
5.7 Class Imbalance Problem
5.8 Multiclass Problem
5.9 Bibliographic Notes
5.10 Exercises
6 Association Analysis: Basic Concepts and Algorithms
6.1 Problem Definition
6.2 Frequent Itemset Generation
6.3 Rule Generation
6.4 Compact Representation of Frequent Itemsets
6.5 Alternative Methods for Generating Frequent Itemsets
6.6 FP-Growth Algorithm
6.7 Evaluation of Association Patterns
6.8 Effect of Skewed Support Distribution
6.9 Bibliographic Notes
6.10 Exercises
9 Cluster Analysis: Basic Concepts and Algorithms
8.1 Overview
8.2 K-means
8.3 Agglomerative Hierarchical Clustering
8.4 DBSCAN
8.5 Cluster Evaluation
8.6 Bibliographic Notes
8.7 Exercises
10 Cluster Analysis: Additional Issues and Algorithms
9.1 Characteristics of Data, Clusters, and Clustering Algorithms
9.2 Prototype-Based Clustering
9.3 Density-Based Clustering
9.4 Graph-Based Clustering
9.5 Scalable Clustering Algorithms
9.6 Which Clustering Algorithm?
9.7 Bibliographic Notes
9.8 Exercises
11 Anomaly Detection
10.1 Preliminaries
10.2 Statistical Approaches
10.3 Proximity-Based Outlier Detection
10.4 Density-Based Outlier Detection
10.5 Clustering-Based Techniques
10.6 Bibliographic Notes
10.7 Exercises
Appendix B Dimensionality Reduction
Appendix D Regression
Appendix E Optimization
Author Index
Subject Index
Verlagsort | Harlow |
---|---|
Sprache | englisch |
Maße | 219 x 276 mm |
Gewicht | 1580 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
ISBN-10 | 1-292-02615-4 / 1292026154 |
ISBN-13 | 978-1-292-02615-2 / 9781292026152 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich