Positive Polynomials
Springer Berlin (Verlag)
978-3-540-41215-1 (ISBN)
1. Real Fields.- 2. Semialgebraic Sets.- 3. Quadratic Forms over Real Fields.- 4. Real Rings.- 5. Archimedean Rings.- 6. Positive Polynomials on Semialgebraic Sets.- 7. Sums of 2mth Powers.- 8. Bounds.- Appendix: Valued Fields.- A.1 Valuations.- A.2 Algebraic Extensions.- A.3 Henselian Fields.- A.4 Complete Fields.- A.5 Dependence and Composition of Valuations.- A.6 Transcendental Extensions.- A.7 Exercises.- A.8 Bibliographical Comments.- References.- Glossary of Notations.
From the reviews of the first edition:
"This is a nicely written introduction to 'reality' and 'positivity' in rings, and besides students and researchers it can also be interesting for anyone who would like to learn more on positivity and orderings." (Vilmos Totik, Acta Scientiarum Mathematicarum, Vol. 68, 2002)
"A book on 'real algebra' that serves as an introduction to the subject in addition to the main theme of the text. ... Well written with exercises for every chapter." (ASLIB Book Guide, Vol. 66 (11), 2001)
Erscheint lt. Verlag | 24.4.2001 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics |
Zusatzinfo | VIII, 268 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 526 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebra • Functional Analysis • hilbert's 17th problem • Polynom • Positive polynomials • Real Algebra • semialgebraic sets • valued fields |
ISBN-10 | 3-540-41215-8 / 3540412158 |
ISBN-13 | 978-3-540-41215-1 / 9783540412151 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich