Introduction to Combinatorial Torsions - Vladimir Turaev

Introduction to Combinatorial Torsions

(Autor)

Buch | Softcover
VIII, 124 Seiten
2001 | 2001
Springer Basel (Verlag)
978-3-7643-6403-8 (ISBN)
58,84 inkl. MwSt
This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.

I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.- 6 The Reidemeister-Franz torsion.- 7 The Whitehead torsion.- 8 Simple homotopy equivalences.- 9 Reidemeister torsions and homotopy equivalences.- 10 The torsion of lens spaces.- 11 Milnor's torsion and Alexander's function.- 12 Group rings of finitely generated abelian groups.- 13 The maximal abelian torsion.- 14 Torsions of manifolds.- 15 Links.- 16 The Fox Differential Calculus.- 17 Computing ?(M3) from the Alexander polynomial of links.- III Refined Torsions.- 18 The sign-refined torsion.- 19 The Conway link function.- 20 Euler structures.- 21 Torsion versus Seiberg-Witten invariants.- References.

"[The book] contains much of the needed background material in topology and algebra...Concering the considerable material it covers, [the book] is very well-written and readable."

--Zentralblatt Math

Erscheint lt. Verlag 1.1.2001
Reihe/Serie Lectures in Mathematics. ETH Zürich
Zusatzinfo VIII, 124 p. 13 illus.
Verlagsort Basel
Sprache englisch
Maße 170 x 244 mm
Gewicht 266 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Addition • Algebra • algebraic topology • Algebraische Topologie • Calc • Construction • Finite • Function • Group • Homology • Homotopy • manifold • Mannigfaltigkeit (Mathematik) • Maximum • Reidemeister torsion • Torsion • Torsionstheorie • Variable
ISBN-10 3-7643-6403-3 / 3764364033
ISBN-13 978-3-7643-6403-8 / 9783764364038
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
16,99