Learning Classifier Systems -

Learning Classifier Systems

From Foundations to Applications
Buch | Softcover
X, 354 Seiten
2000 | 2000
Springer Berlin (Verlag)
978-3-540-67729-1 (ISBN)
53,49 inkl. MwSt
Learning Classifier Systems (LCS) are amachine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.

Basics.- What Is a Learning Classifier System?.- A Roadmap to the Last Decade of Learning Classifier System Research (From 1989 to 1999).- State of XCS Classifier System Research.- An Introduction to Learning Fuzzy Classifier Systems.- Advanced Topics.- Fuzzy and Crisp Representations of Real-Valued Input for Learning Classifier Systems.- Do We Really Need to Estimate Rule Utilities in Classifier Systems?.- Strength or Accuracy? Fitness Calculation in Learning Classifier Systems.- Non-homogeneous Classifier Systems in a Macro-evolution Process.- An Introduction to Anticipatory Classifier Systems.- A Corporate XCS.- Get Real! XCS with Continuous-Valued Inputs.- Applications.- XCS and the Monk's Problems.- Learning Classifier Systems Applied to Knowledge Discovery in Clinical Research Databases.- An Adaptive Agent Based Economic Model.- The Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques.- Latent Learning and Action Planning in Robots with Anticipatory Classifier Systems.- The Bibliography.- A Learning Classifier Systems Bibliography.

Erscheint lt. Verlag 21.6.2000
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo X, 354 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 572 g
Themenwelt Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Adaptive Systems • Agents • Algorithmic Learning • algorithms • autonomous robot • Autonomous Robots • Data Mining • Electronic Commerce • Evolution • extension • fuzzy • Genetic algorithms • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Klassifikation (Math.) • Knowledge • Knowledge Discovery • learning • Learning classifier systems • machine learning • Maschinelles Lernen • robot • Robotics • Rule-Based Systems
ISBN-10 3-540-67729-1 / 3540677291
ISBN-13 978-3-540-67729-1 / 9783540677291
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional …

von Mahbouba Gharbi; Arne Koschel; Andreas Rausch; Gernot Starke

Buch | Hardcover (2023)
dpunkt Verlag
34,90
Lean UX und Design Thinking: Teambasierte Entwicklung …

von Toni Steimle; Dieter Wallach

Buch | Hardcover (2022)
dpunkt (Verlag)
34,90
Wissensverarbeitung - Neuronale Netze

von Uwe Lämmel; Jürgen Cleve

Buch | Hardcover (2023)
Carl Hanser (Verlag)
34,99