Gesammelte Abhandlungen - David Hilbert

Gesammelte Abhandlungen

Erster Band Zahlentheorie

(Autor)

Buch | Softcover
XIV, 540 Seiten
1932 | 1. Softcover reprint of the original 1st ed. 1932
Springer Berlin (Verlag)
978-3-642-50521-8 (ISBN)
49,95 inkl. MwSt
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

David Hilbert (1862-1943) gilt als der vielleicht universellste Mathematiker des ausgehenden 19. und beginnenden 20. Jahrhunderts. Er hat auf zahlreichen Gebieten der Mathematik und der mathematischen Physik grundlegende neue Resultate vorgelegt und wesentliche Entwicklungen angebahnt.

1. Über die Transzendenz der Zahlen e und ?.- [Nachrichten der Gesellschaft der Wissenschaften zu Göttingen S. 113-116 (1893). Mathem. Annalen Bd. 43, S. 216-219 (1893).].- 2. Zwei neue Beweise für die Zerlegbarkeit der Zahlen eines Körpers in Primideale.- [Jahresbericht der Deutschen Mathematikervereinigung Bd. 3, S. 59 (1894).].- 3. Über die Zerlegung der Ideale eines Zahlkörpers in Primideale.- [Mathem. Annalen Bd. 44, S. 1-8 (1894).].- 4. Grundzüge einer Theorie des Galoisschen Zahlkörpers.- [Nachrichten der Gesellschaft der Wissenschaften zu Göttingen S. 224-236 (1894).].- 5. Über den Dirichletschen biquadratischen Zahlkörper.- [Mathem. Annalen Bd. 45, S. 309-340 (1894).].- 6. Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über Abelsche Zahlkörper.- [Nachrichten der Gesellschaft der Wissenschaften zu Göttingen S. 29-39(1896)].- 7. Die Theorie der algebraischen Zahlkörper.- [Jahresbericht der Deutschen Mathematikervereinigung Bd. 4, S. 175-546 (1897).].- Vorwort.- Verzeichnis der Sätze und Hilfssätze.- 8. Über die Theorie der relativquadratischen Zahlkörper.- [Jahresbericht der Deutschen Mathematikervereinigung Bd. 6, S. 88-94 (1899)].- 9. Über die Theorie des relativquadratischen Zahlkörpers.- [Mathem. Annalen Bd. 51, S. 1-127 (1899).].- 10. Über die Theorie der relativ-Abelschen Zahlkörper.- [Acta Mathematica Bd. 26, S. 99-132 (1902) und Nachrichten der Gesellschaft der Wissenschaften zu Göttingen S. 370-399 (1898).].- 11. Beweis für die I)arstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem).- Dem Andenken an Hermann Minkowski gewidmet [Nachrichten der Gesellschaft der Wissenschaften zu Göttingen S. 17-36 (1909) und Mathem. Annalen Bd. 67, S. 281-300 (1909).].- ZuHilberts algebraisch-zahlentheoretischen Arbeiten.- Verzeichnis der Begriffsnamen.

Erscheint lt. Verlag 1.1.1932
Zusatzinfo XIV, 540 S.
Verlagsort Berlin
Sprache deutsch
Maße 155 x 235 mm
Gewicht 831 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Analysis • Prime • Primzahl • Waringsches Problem • Zahlentheorie
ISBN-10 3-642-50521-X / 364250521X
ISBN-13 978-3-642-50521-8 / 9783642505218
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00