There's Something About Gödel (eBook)
256 Seiten
John Wiley & Sons (Verlag)
978-1-4443-5761-5 (ISBN)
* Offers a clear understanding of this difficult subject by presenting each of the key steps of the Theorem in separate chapters
* Discusses interpretations of the Theorem made by celebrated contemporary thinkers
* Sheds light on the wider extra-mathematical and philosophical implications of Gödel's theories
* Written in an accessible, non-technical style
Francesco Berto teaches logic, ontology, and philosophy of mathematics at the universities of Aberdeen in Scotland, and Venice and Milan-San Raffaele in Italy. He holds a Chaire d'Excellence fellowship at CNRS in Paris, where he has taught ontology at the École Normale Supérieure, and he is a visiting professor at the Institut Wiener Kreis of the University of Vienna. He has written papers for American Philosophical Quarterly, Dialectica, The Philosophical Quarterly, the Australasian Journal of Philosophy, the European Journal of Philosophy, Philosophia Mathematica, Logique et Analyse, and Metaphysica, and runs the entries "Dialetheism" and "Impossible Worlds" in the Stanford Encyclopedia of Philosophy. His book How to Sell a Contradiction has won the 2007 Castiglioncello prize for the best philosophical book by a young philosopher.
Prologue.
Acknowledgments.
Part I: The Gödelian Symphony.
1 Foundations and Paradoxes.
1 "This sentence is false".
2 The Liar and Gödel.
3 Language and metalanguage.
4 The axiomatic method, or how to get the non-obvious out of the obvious.
5 Peano's axioms ... .
6 ... and the unsatisfied logicists, Frege and Russell.
7 Bits of set theory.
8 The Abstraction Principle.
9 Bytes of set theory.
10 Properties, relations, functions, that is, sets again.
11 Calculating, computing, enumerating, that is, the notion of algorithm.
12 Taking numbers as sets of sets.
13 It's raining paradoxes.
14 Cantor's diagonal argument.
15 Self-reference and paradoxes.
2 Hilbert.
1 Strings of symbols.
2 "... in mathematics there is no ignorabimus".
3 Gödel on stage.
4 Our first encounter with the Incompleteness Theorem ... .
5 ... and some provisos.
3 Gödelization, or Say It with Numbers!
1 TNT.
2 The arithmetical axioms of TNT and the "standard model" N.
3 The Fundamental Property of formal systems.
4 The Gödel numbering ... .
5 ... and the arithmetization of syntax.
4 Bits of Recursive Arithmetic ... .
1 Making algorithms precise.
2 Bits of recursion theory.
3 Church's Thesis.
4 The recursiveness of predicates, sets, properties, and relations.
5 ... And How It Is Represented in Typographical Number Theory.
1 Introspection and representation.
2 The representability of properties, relations, and functions ... .
3 ... and the Gödelian loop.
6 "I Am Not Provable".
1 Proof pairs.
2 The property of being a theorem of TNT (is not recursive!)
3 Arithmetizing substitution.
4 How can a TNT sentence refer to itself?
5 gamma
6 Fixed point.
7 Consistency and omega-consistency.
8 Proving G1.
9 Rosser's proof.
7 The Unprovability of Consistency and the "Immediate Consequences" of G1 and G2.
1 G2.
2 Technical interlude.
3 "Immediate consequences" of G1 and G2.
4 Undecidable1 and undecidable2.
5 Essential incompleteness, or the syndicate of mathematicians.
6 Robinson Arithmetic.
7 How general are Gödel's results?
8 Bits of Turing machine.
9 G1 and G2 in general.
10 Unexpected fish in the formal net.
11 Supernatural numbers.
12 The culpability of the induction scheme.
13 Bits of truth (not too much of it, though).
Part II: The World after Gödel.
8 Bourgeois Mathematicians! The Postmodern Interpretations.
1 What is postmodernism?
2 From Gödel to Lenin.
3 Is "Biblical proof" decidable?
4 Speaking of the totality.
5 Bourgeois teachers!
6 (Un)interesting bifurcations.
9 A Footnote to Plato.
1 Explorers in the realm of numbers.
2 The essence of a life.
3 "The philosophical prejudices of our times".
4 From Gödel to Tarski.
5 Human, too human.
10 Mathematical Faith.
1 "I'm not crazy!"
2 Qualified doubts.
3 From Gentzen to the Dialectica interpretation.
4 Mathematicians are people of faith.
11 Mind versus Computer: Gödel and Artificial Intelligence.
1 Is mind (just) a program?
2 "Seeing the truth" and "going outside the system".
3 The basic mistake.
4 In the haze of the transfinite.
5 "Know thyself": Socrates and the inexhaustibility of mathematics.
12 Gödel versus Wittgenstein and the Paraconsistent Interpretation.
1 When geniuses meet ... .
2 The implausible Wittgenstein.
3 "There is no metamathematics".
4 Proof and prose.
5 The single argument.
6 But how can arithmetic be inconsistent?
7 The costs and benefits of making Wittgenstein plausible.
Epilogue.
References.
Index.
"This is a beautifully clear and accurate presentation of the
material, with no technical demands beyond what is required for
accuracy, and filled with interesting philosophical suggestions."
(John Woods, University of British Columbia)
"There's Something about G¨odel is a bargain: two books in
one. The first half is a gentle but rigorous introduction to the
incompleteness theorems for the mathematically uninitiated. The
second is a survey of the philosophical, psychological, and
sociological consequences people have attempted to derive from the
theorems, some of them quite fantastical." (Philosophia
Mathematica, 2011)
"There is a story that in 1930 the great mathematician John von
Neumann emerged from a seminar delivered by Kurt Gödel saying:
'It's all over.' Gödel had just proved the two
theorems about the logical foundations of mathematics that are the
subject of this valuable new book by Francesco Berto. Berto's clear
exposition and his strategy of dividing the proof into short,
easily digestible chunks make it pleasant reading ... .Berto is
lucid and witty in exposing mistaken applications of Gödel's
results ... [and] has provided a thoroughly recommendable guide to
Gödel's theorems and their current status within, and outside,
mathematical logic." (Times Higher Education
Supplement, February 2010)
"Berto's book will tell you everything you wanted to know about
Gödel's theorem, but were too afraid to ask. Read it if you
want your biggest organ pleasurably stimulated."
--Graham Priest, University of Melbourne
Erscheint lt. Verlag | 13.9.2011 |
---|---|
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Philosophie ► Allgemeines / Lexika |
Geisteswissenschaften ► Philosophie ► Philosophie der Neuzeit | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Schlagworte | Philosophie • Philosophy • Wissenschaft |
ISBN-10 | 1-4443-5761-1 / 1444357611 |
ISBN-13 | 978-1-4443-5761-5 / 9781444357615 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich