Mumford-Tate Groups and Domains - Mark Green, Phillip A. Griffiths, Matt Kerr

Mumford-Tate Groups and Domains (eBook)

Their Geometry and Arithmetic (AM-183)
eBook Download: EPUB
2012
288 Seiten
Princeton University Press (Verlag)
978-1-4008-4273-5 (ISBN)
Systemvoraussetzungen
109,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.

Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis.

Erscheint lt. Verlag 22.4.2012
Reihe/Serie Annals of Mathematics Studies
Annals of Mathematics Studies
Zusatzinfo 40 line illus. 6 tables.
Verlagsort Princeton
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte abelian variety • absolute Hodge class • Addition • adjoint representation • algebraic cycle • Algebraic Geometry • algebraic group • algebraic number field • algebraic variety • arithmetic • arithmetic group • automorphic cohomology • Automorphic form • Automorphic function • automorphism • Basis (linear algebra) • bilinear form • Calabi–Yau manifold • Calculation • class field theory • classical group • Codimension • coefficient • cohomology • compact dual • Compactification (mathematics) • Complex Analysis • Complex group • Complex Lie group • complex manifold • complex multiplication • complex multiplication Hodge structure • Computation • conjecture • corollary • Degenerate bilinear form • Deligne torus integer • Dense set • Diagram (category theory) • Discrete series representation • Eigenvalues and Eigenvectors • Embedding • Endomorphism • Endomorphism Algebra • _-equivalence classes • exceptional group • existential quantification • exterior derivative • finite group • Galois extension • Galois group • Galois Theory • Generic point • Geometry • Grothendieck conjecture • Group homomorphism • Harish-Chandra • Hermitian Symmetric Space • Hodge conjecture • Hodge decomposition • Hodge domain • Hodge filtration • Hodge orientation • Hodge representation • Hodge structure • Hodge tensor • Hodge Theory • holomorphic mapping • homogeneous complex manifold • homogeneous space • Homomorphism • Identity component • Integral curve • Integral element • irreducible representation • jordan decomposition • Kubota rank • Lie algebra • Lie algebra representation • Lie group • linear algebra • Linear algebraic group • Linear map • Linear subspace • Maximal compact subgroup • maximal torus • Mixed Hodge structure • moduli space • Monodromy • Monodromy group • Morphism • Mumford-Tate domain • Mumford-Tate group • Mumford-Tate subdomain • Natural number • natural symmetry group • Nilpotent orbit • Noether-Lefschetz locus • normal subgroup • oriented imaginary number fields • Parameter Space • period domain • period map • Pfaffian • polarization • polarized Hodge structure • projective variety • pullback • pure Hodge structure • Rational point • reflex field • Representation Theory • root system • scientific notation • semisimple Lie algebra • semisimple Lie group • Shimura variety • Simple Lie group • Special case • SUBGROUP • submanifold • Subquotient • Subset • Summation • Symmetry group • Tangent Space • Tate twist • Tensor • tensor product • Theorem • Upper and lower bounds • Vector Space • Vogan diagram method • Weyl Group • Zariski topology • Γ-equivalence classes
ISBN-10 1-4008-4273-5 / 1400842735
ISBN-13 978-1-4008-4273-5 / 9781400842735
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich