Bayesian Methods for Structural Dynamics and Civil Engineering (eBook)

(Autor)

eBook Download: PDF
2010 | 1. Auflage
312 Seiten
John Wiley & Sons (Verlag)
978-0-470-82455-9 (ISBN)

Lese- und Medienproben

Bayesian Methods for Structural Dynamics and Civil Engineering - Ka-Veng Yuen
Systemvoraussetzungen
111,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level - especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable.

* Familiarizes readers with the latest developments in the field

* Includes identification problems for both dynamic and static systems

* Addresses challenging civil engineering problems such as modal/model updating

* Presents methods applicable to mechanical and aerospace engineering

* Gives engineers and engineering students a concrete sense of implementation

* Covers real-world case studies in civil engineering and beyond, such as:

* structural health monitoring

* seismic attenuation

* finite-element model updating

* hydraulic jump

* artificial neural network for damage detection

* air quality prediction

* Includes other insightful daily-life examples

* Companion website with MATLAB code downloads for independent practice

* Written by a leading expert in the use of Bayesian methods for civil engineering problems

This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text.

MATLAB code and lecture materials for instructors available at www.wiley.com/go/yuen

Ka-Veng Yuen is an Associate Professor of Civil and Environmental Engineering at the University of Macau. His research interests include random vibrations, system identification, structural health monitoring, modal/model identification, reliability analysis of engineering systems, structural control, model class selection, air quality prediction, non-destructive testing and probabilistic methods. He has been working on Bayesian statistical inference and its application since 1997. Yuen has published over sixty research papers in international conferences and top journals in the field. He is an editorial board member of the International Journal of Reliability and Safety, and is also a member of the ASCE Probabilistic Methods Committee, the Subcommittee on Computational Stochastic Mechanics, and the Subcommittee on System Identification and Structural Control of the International Association for Structural Safety and Reliability (IASSAR), as well as the Committee of Financial Analysis and Computation, Chinese Association of New Cross Technology in Mathematics, Mechanics and Physics. Yuen holds an M.S. from Hong Kong University of Science and Technology and a Ph.D. from Caltech, both in Civil Engineering.

Contents

Preface

Nomenclature

1 Introduction

1.1 Thomas Bayes and Bayesian Methods in Engineering

1.2 Purpose of Model Updating

1.3 Source of Uncertainty and Bayesian Updating

1.4 Organization of the Book

2 Basic Concepts and Bayesian Probabilistic Framework

2.1 Conditional Probability and Basic Concepts

2.2 Bayesian Model Updating with Input-output Measurements

2.3 Deterministic versus Probabilistic Methods

2.4 Regression Problems

2.5 Numerical Representation of the Updated PDF

2.6 Application to Temperature Effects on Structural
Behavior

2.7 Application to Noise Parameters Selection for Kalman
Filter

2.8 Application to Prediction of Particulate Matter
Concentration

3 Bayesian Spectral Density Approach

3.1 Modal and Model Updating of Dynamical Systems

3.2 Random Vibration Analysis

3.3 Bayesian Spectral Density Approach

3.4 Numerical Verifications

3.5 Optimal Sensor Placement

3.6 Updating of a Nonlinear Oscillator

3.7 Application to Structural Behavior under Typhoons

3.8 Application to Hydraulic Jump

4 Bayesian Time-domain Approach

4.1 Introduction

4.2 Exact Bayesian Formulation and its Computational
Difficulties

4.3 Random Vibration Analysis of Nonstationary Response

4.4 Bayesian Updating with Approximated PDF Expansion

4.5 Numerical Verification

4.6 Application to Model Updating with Unmeasured Earthquake
Ground Motion

4.7 Concluding Remarks

4.8 Comparison of Spectral Density Approach and Time-domain
Approach

4.9 Extended Readings

5 Model Updating Using Eigenvalue-Eigenvector
Measurements

5.1 Introduction

5.2 Formulation

5.3 Linear Optimization Problems

5.4 Iterative Algorithm

5.5 Uncertainty Estimation

5.6 Applications to Structural Health Monitoring

5.7 Concluding Remarks

6 Bayesian Model Class Selection

6.1 Introduction

6.2 Bayesian Model Class Selection

6.3 Model Class Selection for Regression Problems

6.4 Application to Modal Updating

6.5 Application to Seismic Attenuation Empirical
Relationship

6.6 Prior Distributions - Revisited

6.7 Final Remarks

A Relationship between the Hessian and Covariance Matrix for
Gaussian Random Variables

B Contours of Marginal PDFs for Gaussian Random
Variables

C Conditional PDF for Prediction

C.1 Two Random Variables

C.2 General Cases

References

Index

Erscheint lt. Verlag 22.2.2010
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik Bauwesen
Schlagworte Bauingenieur- u. Bauwesen • Civil Engineering & Construction • Structures • Strukturdynamik • Tragwerke
ISBN-10 0-470-82455-7 / 0470824557
ISBN-13 978-0-470-82455-9 / 9780470824559
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 8,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich