Semi-Supervised and Unsupervised Machine Learning (eBook)
320 Seiten
John Wiley & Sons (Verlag)
978-1-118-58633-4 (ISBN)
Amparo Albalate,?University of Ulm, Institute of Information Technology, Germany. Wolfgang Minker, University of Ulm, Institute of Information Technology, Germany.
PART 1. STATE OF THE ART 1
Chapter 1. Introduction 3
1.1. Organization of the book 6
1.2. Utterance corpus 8
1.3. Datasets from the UCI repository10
1.4. Microarray dataset 13
1.5. Simulated datasets 14
Chapter 2. State of the Art in Clustering and Semi-Supervised
Techniques 15
2.1. Introduction 15
2.2. Unsupervised machine learning (clustering) 15
2.3. A brief history of cluster analysis 16
2.4. Cluster algorithms 19
2.5. Applications of cluster analysis 52
2.6. Evaluation methods 77
2.7. Internal cluster evaluation 77
2.8. External cluster validation 80
2.9. Semi-supervised learning 84
2.10. Summary 88
PART 2. APPROACHES TO SEMI-SUPERVISED CLASSIFICATION
91
Chapter 3. Semi-Supervised Classification Using Prior Word
Clustering 93
3.1. Introduction 93
3.2. Dataset 94
3.3. Utterance classification scheme 94
3.4. Semi-supervised approach based on term clustering 98
3.5. Disambiguation 113
3.6. Summary 124
Chapter 4. Semi-Supervised Classification Using Pattern
Clustering 127
4.1. Introduction 127
4.2. New semi-supervised algorithm using the cluster and label
strategy 128
4.3. Optimum cluster labeling 132
4.4. Supervised classification block 154
4.5. Datasets 159
4.6. An analysis of the bounds for the cluster and label
approaches 162
4.7. Extension through cluster pruning 164
4.8. Simulations and results 173
4.9. Summary 179
PART 3 . CONTRIBUTIONS TO UNSUPERVISED CLASSIFICATION -
ALGORITHMS TO DETECT THE OPTIMAL NUMBER OF CLUSTERS
183
Chapter 5. Detection of the Number of Clusters through
Non-Parametric Clustering Algorithms 185
5.1. Introduction 185
5.2. New hierarchical pole-based clustering algorithm 186
5.3. Evaluation 190
5.4. Datasets 192
5.5. Summary 197
Chapter 6. Detecting the Number of Clusters through Cluster
Validation 199
6.1. Introduction 199
6.2. Cluster validation methods 201
6.3. Combination approach based on quantiles 206
6.4. Datasets 212
6.5. Results 214
6.6. Application of speech utterances 223
6.7. Summary 224
Bibliography 227
Index 243
Erscheint lt. Verlag | 24.1.2013 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Audio & Speech Processing & Broadcasting • Audio-, Sprachverarbeitung u. Ãbertragung • Audio-, Sprachverarbeitung u. Übertragung • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Sprachverarbeitung |
ISBN-10 | 1-118-58633-6 / 1118586336 |
ISBN-13 | 978-1-118-58633-4 / 9781118586334 |
Haben Sie eine Frage zum Produkt? |
Größe: 66,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich