Strange Phenomena in Convex and Discrete Geometry - Chuanming Zong

Strange Phenomena in Convex and Discrete Geometry

(Autor)

Buch | Softcover
158 Seiten
1996 | Softcover reprint of the original 1st ed. 1996
Springer-Verlag New York Inc.
978-0-387-94734-1 (ISBN)
53,49 inkl. MwSt
This volume presents some of the most famous problems of convex and discrete geometry as well as their answers. Though covering some of the most recent developments, the book is self-contained and is intended for the reader with little training in mathematics.
Convex and discrete geometry is one of the most intuitive subjects in mathematics. One can explain many of its problems, even the most difficult - such as the sphere-packing problem (what is the densest possible arrangement of spheres in an n-dimensional space?) and the Borsuk problem (is it possible to partition any bounded set in an n-dimensional space into n+1 subsets, each of which is strictly smaller in "extent" than the full set?) - in terms that a layman can understand; and one can reasonably make conjectures about their solutions with little training in mathematics.

1 Borsuk’s Problem.- §1 Introduction.- §2 The Perkal-Eggleston Theorem.- §3 Some Remarks.- §4 Larman’s Problem.- §5 The Kahn-Kalai Phenomenon.- 2 Finite Packing Problems.- §1 Introduction.- §2 Supporting Functions, Area Functions, Minkowski Sums, Mixed Volumes, and Quermassintegrals.- §3 The Optimal Finite Packings Regarding Quermassintegrals.- §4 The L. Fejes Tóth-Betke-Henk-Wills Phenomenon.- §5 Some Historical Remarks.- 3 The Venkov-McMullen Theorem and Stein’s Phenomenon.- §1 Introduction.- §2 Convex Bodies and Their Area Functions.- §3 The Venkov-McMullen Theorem.- §4 Stein’s Phenomenon.- §5 Some Remarks.- 4 Local Packing Phenomena.- §1 Introduction.- §2 A Phenomenon Concerning Blocking Numbers and Kissing Numbers.- §3 A Basic Approximation Result.- §4 Minkowski’s Criteria for Packing Lattices and the Densest Packing Lattices.- §5 A Phenomenon Concerning Kissing Numbers and Packing Densities.- §6 Remarks and Open Problems.- 5 Category Phenomena.- §1 Introduction.- §2 Gruber’s Phenomenon.- §3 The Aleksandrov-Busemann-Feller Theorem.- §4 A Theorem of Zamfirescu.- §5 The Schneider-Zamfirescu Phenomenon.- §6 Some Remarks.- 6 The Busemann-Petty Problem.- §1 Introduction.- §2 Steiner Symmetrization.- §3 A Theorem of Busemann.- §4 The Larman-Rogers Phenomenon.- §5 Schneider’s Phenomenon.- §6 Some Historical Remarks.- 7 Dvoretzky’s Theorem.- §1 Introduction.- §2 Preliminaries.- §3 Technical Introduction.- §4 A Lemma of Dvoretzky and Rogers.- §5 An Estimate for ?V(AV).- §6 ?-nets and ?-spheres.- §7 A Proof of Dvoretzky’s Theorem.- §8 An Upper Bound for M (n, ?).- §9 Some Historical Remarks.- Inedx.

Reihe/Serie Universitext
Zusatzinfo 6 Illustrations, black and white; VI, 158 p. 6 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-387-94734-5 / 0387947345
ISBN-13 978-0-387-94734-1 / 9780387947341
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95