Thinking in Problems -  Alexander A. Roytvarf

Thinking in Problems (eBook)

How Mathematicians Find Creative Solutions
eBook Download: PDF
2013 | 2013. Auflage
XXXVII, 405 Seiten
Birkhauser Boston (Verlag)
978-0-8176-8406-8 (ISBN)
Systemvoraussetzungen
83,44 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This in-depth guide to creative problem-solving techniques in mathematics shows how to use a range of valuable methods, including calculus and combinatorics, to tackle thorny academic obstacles in other fields such as engineering and applied technology.

This concise, self-contained textbook gives an in-depth look at problem-solving from a mathematician's point-of-view. Each chapter builds off the previous one, while introducing a variety of methods that could be used when approaching any given problem. Creative thinking is the key to solving mathematical problems, and this book outlines the tools necessary to improve the reader's technique.The text is divided into twelve chapters, each providing corresponding hints, explanations, and finalization of solutions for the problems in the given chapter. For the reader's convenience, each exercise is marked with the required background level. This book implements a variety of strategies that can be used to solve mathematical problems in fields such as analysis, calculus, linear and multilinear algebra and combinatorics. It includes applications to mathematical physics, geometry, and other branches of mathematics. Also provided within the text are real-life problems in engineering and technology.Thinking in Problems is intended for advanced undergraduate and graduate students in the classroom or as a self-study guide. Prerequisites include linear algebra and analysis.

Section I. Problems.- 1. Jacobi Identities and Related Combinatorial Formulas.- 2. A Property of Recurrent Sequences.- 3. A Combinatorial Algorithm in Multiexponential Analysis.- 4. A Frequently Encountered Determinant.- 5. A Dynamical System with a Strange Attractor.- 6. Polar and Singular Value Decomposition Theorems.- 7. 2X2 Matrices Which Are Roots of 1.- 8. A Property of Orthogonal Matrices.- 9. Convexity and Related Classical Inequalities.- 10. One-Parameter Groups of Linear Transformations.- 11. Examples of Generating Functions in Combinatorial Theory and Analysis.- 12. Least Squares and Chebyshev Systems.- Section II. Hints.- 1. Jacobi Identities and Related Combinatorial Formulas.- 2. A Property of Recurrent Sequences.- 3. A Combinatorial Algorithm in Multiexponential Analysis.- 4. A Frequently Encountered Determinant.- 5. A Dynamical System with a Strange Attractor.- 6. Polar and Singular Value Decomposition Theorems.- 7. 2X2 Matrices Which Are Roots of 1.- 8. A Property of Orthogonal Matrices.- 9. Convexity and Related Classical Inequalities.- 10. One-Parameter Groups of Linear Transformations.- 11. Examples of Generating Functions in Combinatorial Theory and Analysis.- 12. Least Squares and Chebyshev Systems.- Section III. Explanations.-1. Jacobi Identities and Related Combinatorial Formulas.- 2. A Property of Recurrent Sequences.- 3. A Combinatorial Algorithm in Multiexponential Analysis.- 4. A Frequently Encountered Determinant.- 5. A Dynamical System with a Strange Attractor.- 6. Polar and Singular Value Decomposition Theorems.- 7. 2X2 Matrices Which Are Roots of 1.- 8. A Property of Orthogonal Matrices.- 9. Convexity and Related Classical Inequalities.- 10. One-Parameter Groups of Linear Transformations.- 11. Examples of Generating Functions in Combinatorial Theory and Analysis.- 12. Least Squares and Chebyshev Systems.- Section IV. Full Solutions.- 1. Jacobi Identities and Related Combinatorial Formulas.- 2. A Property of Recurrent Sequences.- 3. A Combinatorial Algorithm in Multiexponential Analysis.- 4. A Frequently Encountered Determinant.- 5. A Dynamical System with a Strange Attractor.- 6. Polar and Singular Value Decomposition Theorems.- 7. 2X2 Matrices Which Are Roots of 1.- 8. A Property of Orthogonal Matrices.- 9. Convexity and Related Classical Inequalities.- 10. One-Parameter Groups of Linear Transformations.- 11. Examples of Generating Functions in Combinatorial Theory and Analysis.- 12. Least Squares and Chebyshev Systems.

Erscheint lt. Verlag 4.1.2013
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Graphentheorie
Schlagworte Analysis • Chebyshev systems • combinatorial theory • Dynamical Systems • Jacobi identities • Multiexponential analysis • Singular value decomposition theorems
ISBN-10 0-8176-8406-9 / 0817684069
ISBN-13 978-0-8176-8406-8 / 9780817684068
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich