Outlier Analysis

Buch | Hardcover
446 Seiten
2013
Springer-Verlag New York Inc.
978-1-4614-6395-5 (ISBN)

Lese- und Medienproben

Outlier Analysis - Charu C. Aggarwal
149,79 inkl. MwSt
Zu diesem Artikel existiert eine Nachauflage
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions– the data can be of any type, structured or unstructured, and may be extremely large.

Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques  commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data  domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as  credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.

An Introduction to Outlier Analysis.- Probabilistic and Statistical Models for Outlier Detection.- Linear Models for Outlier Detection.- Proximity-based Outlier Detection.- High-Dimensional Outlier Detection: The Subspace Method.- Supervised Outlier Detection.- Outlier Detection in Categorical, Text and Mixed Attribute Data.- Time Series and Multidimensional Streaming Outlier Detection.- Outlier Detection in Discrete Sequences.- Spatial Outlier Detection.- Outlier Detection in Graphs and Networks.- Applications of Outlier Analysis.

Zusatzinfo XV, 446 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Schlagworte data analytics • Data Mining • machine learning • Outlier Analysis
ISBN-10 1-4614-6395-5 / 1461463955
ISBN-13 978-1-4614-6395-5 / 9781461463955
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90