Regularization Methods in Banach Spaces (eBook)

eBook Download: PDF
2012
294 Seiten
De Gruyter (Verlag)
978-3-11-025572-0 (ISBN)
Systemvoraussetzungen
169,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the BV-norm have recently become very popular. Meanwhile the most well-known methods have been investigated for linear and nonlinear operator equations in Banach spaces. Motivated by these facts the authors aim at collecting and publishing these results in a monograph.



Thomas Schuster, Carl von Ossietzky Universität Oldenburg, Germany;Barbara Kaltenbacher, University of Stuttgart, Germany; Bernd Hofmann, Chemnitz University of Technology, Germany; Kamil S. Kazimierski, University of Bremen, Germany.

lt;!doctype html public "-//w3c//dtd html 4.0 transitional//en">

Thomas Schuster, Carl von Ossietzky Universität Oldenburg, Germany;Barbara Kaltenbacher, University of Stuttgart, Germany; Bernd Hofmann, Chemnitz University of Technology, Germany; Kamil S. Kazimierski, University of Bremen, Germany.

Preface 7
I Why to use Banach spaces in regularization theory? 13
1 Applications with a Banach space setting 16
1.1 X-ray diffractometry 16
1.2 Two phase retrieval problems 18
1.3 A parameter identification problem for an elliptic partial differential equation 21
1.4 An inverse problem from finance 25
1.5 Sparsity constraints 30
II Geometry and mathematical tools of Banach spaces 37
2 Preliminaries and basic definitions 40
2.1 Basic mathematical tools 40
2.2 Convex analysis 43
2.2.1 The subgradient of convex functionals 43
2.2.2 Duality mappings 46
2.3 Geometry of Banach space norms 48
2.3.1 Convexity and smoothness 49
2.3.2 Bregman distance 56
3 Ill-posed operator equations and regularization 61
3.1 Operator equations and the ill-posedness phenomenon 61
3.1.1 Linear problems 62
3.1.2 Nonlinear problems 64
3.1.3 Conditional well-posedness 67
3.2 Mathematical tools in regularization theory 68
3.2.1 Regularization approaches 69
3.2.2 Source conditions and distance functions 75
3.2.3 Variational inequalities 79
3.2.4 Differences between the linear and the nonlinear case 81
III Tikhonov-type regularization 89
4 Tikhonov regularization in Banach spaces with general convex penalties 93
4.1 Basic properties of regularized solutions 93
4.1.1 Existence and stability of regularized solutions 93
4.1.2 Convergence of regularized solutions 96
4.2 Error estimates and convergence rates 101
4.2.1 Error estimates under variational inequalities 102
4.2.2 Convergence rates for the Bregman distance 107
4.2.3 Tikhonov regularization under convex constraints 111
4.2.4 Higher rates briefly visited 113
4.2.5 Rate results under conditional stability estimates 115
4.2.6 A glimpse of rate results under sparsity constraints 117
5 Tikhonov regularization of linear operators with power-type penalties 120
5.1 Source conditions 120
5.2 Choice of the regularization parameter 125
5.2.1 A priori parameter choice 125
5.2.2 Morozov’s discrepancy principle 127
5.2.3 Modified discrepancy principle 128
5.3 Minimization of the Tikhonov functionals 134
5.3.1 Primal method 135
5.3.2 Dual method 147
IV Iterative regularization 153
6 Linear operator equations 156
6.1 The Landweber iteration 158
6.1.1 Noise-free case 158
6.1.2 Regularization properties 164
6.2 Sequential subspace optimization methods 169
6.2.1 Bregman projections 170
6.2.2 The method for exact data (SESOP) 175
6.2.3 The regularization method for noisy data (RESESOP) 177
6.3 Iterative solution of split feasibility problems (SFP) 189
6.3.1 Continuity of Bregman and metric projections 191
6.3.2 A regularization method for the solution of SFPs 195
7 Nonlinear operator equations 205
7.1 Preliminaries 205
7.1.1 Conditions on the spaces 205
7.1.2 Variational inequalities 206
7.1.3 Conditions on the forward operator 207
7.2 Gradient type methods 211
7.2.1 Convergence of the Landweber iteration with the discrepancy principle 211
7.2.2 Convergence rates for the iteratively regularized Landweber iteration with a priori stopping rule 215
7.3 The iteratively regularized Gauss-Newton method 224
7.3.1 Convergence with a priori parameter choice 227
7.3.2 Convergence with a posteriori parameter choice 237
7.3.3 Numerical illustration 242
V The method of approximate inverse 245
8 Setting of the method 248
9 Convergence analysis in Lp (O) and C (K) 251
9.1 The case X = Lp(O) 251
9.2 The case X = C (K) 256
9.3 An application to X-ray diffractometry 260
10 A glimpse of semi-discrete operator equations 265
Bibliography 277
Index 292

Erscheint lt. Verlag 30.7.2012
Reihe/Serie ISSN
ISSN
Radon Series on Computational and Applied Mathematics
Radon Series on Computational and Applied Mathematics
Verlagsort Berlin/Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Banach space • Banach spaces • Iterative Method • iterative methods • Regularization theory • Tikhonov regularization
ISBN-10 3-11-025572-3 / 3110255723
ISBN-13 978-3-11-025572-0 / 9783110255720
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich