Ordinary Differential Equations (eBook)

eBook Download: PDF
2012 | 2012
XIII, 799 Seiten
Springer New York (Verlag)
978-1-4614-3618-8 (ISBN)

Lese- und Medienproben

Ordinary Differential Equations - William Adkins, Mark G. Davidson
Systemvoraussetzungen
63,06 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Unlike other texts on differential equations, this one provides an early presentation of the Laplace transform before deploying it in the motivation and development of many of the differential equation concepts for which it is particularly well suited.
Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations.Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.

William A. Adkins and Mark G. Davidson are currently professors of mathematics at Louisiana State University.

Preface.- 1 First Order Differential Equations.- 2 The Laplace Transform.- 3 Second Order Constant Coefficient Linear Differential Equations.- 4 Linear Constant Coefficient Differential Equations.- 5 Second Order Linear Differential Equations.- 6 Discontinuous Functions and the Laplace Transform.- 7 Power Series Methods.- 8 Matrices.- 9 Linear Systems of Differential Equations.- A Appendix.- B Selected Answers.- C Tables.- Symbol Index.- Index.

Erscheint lt. Verlag 1.7.2012
Reihe/Serie Undergraduate Texts in Mathematics
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte discontinuous functions • existence theorem • first order differential equations • general linear differential equations • impulse functions • Laplace transform • matrix operations • Ordinary differential equations • phase plane analysis • power series methods • second order differential equations • systems modeling • systems of linear differential equations • uniqueness theorem
ISBN-10 1-4614-3618-4 / 1461436184
ISBN-13 978-1-4614-3618-8 / 9781461436188
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich