Markov Bases in Algebraic Statistics (eBook)
XII, 300 Seiten
Springer New York (Verlag)
978-1-4614-3719-2 (ISBN)
Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels.
This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field.
Satoshi Aoki obtained his doctoral degree from the University of Tokyo in 2004 and is currently an associate professor in the Graduate School of Science and Engineering, Kagoshima University.
Hisayuki Hara obtained his doctoral degree from the University of Tokyo in 1999 and is currently an associate professor in the Faculty of Economics, Niigata University.
Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in the Graduate School of Information Science and Technology, University of Tokyo.
Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Grobner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels.This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field.
Satoshi Aoki obtained his doctoral degree from the University of Tokyo in 2004 and is currently an associate professor in the Graduate School of Science and Engineering, Kagoshima University.Hisayuki Hara obtained his doctoral degree from the University of Tokyo in 1999 and is currently an associate professor in the Faculty of Economics, Niigata University.Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in the Graduate School of Information Science and Technology, University of Tokyo.
Exact tests for contingency tables and discrete exponential families.- Markov chain Monte Carlo methods over discrete sample space.- Toric ideals and their Gröbner bases.- Definition of Markov bases and other bases.- Structure of minimal Markov bases.- Method of distance reduction.- Symmetry of Markov bases.- Decomposable models of contingency tables.- Markov basis for no-three-factor interaction models and some other hierarchical models.- Two-way tables with structural zeros and fixed subtable sums.- Regular factorial designs with discrete response variables.- Group-wise selection models.- The set of moves connecting specific fibers.- Disclosure limitation problem and Markov basis.- Gröbner basis techniques for design of experiments.- Running Markov chain without Markov bases.- References.- Index.
Erscheint lt. Verlag | 25.7.2012 |
---|---|
Reihe/Serie | Springer Series in Statistics | Springer Series in Statistics |
Zusatzinfo | XII, 300 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Algebra • algebraic statistics • Markov Bases • Monte Carlo • Toric Ideals |
ISBN-10 | 1-4614-3719-9 / 1461437199 |
ISBN-13 | 978-1-4614-3719-2 / 9781461437192 |
Haben Sie eine Frage zum Produkt? |
Größe: 6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich